Suppr超能文献

激活素和 GDF11 协同作用反馈控制神经上皮干细胞增殖和命运。

Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate.

机构信息

Department of Developmental & Cell Biology, University of California, Irvine, CA 92697, USA.

出版信息

Development. 2011 Oct;138(19):4131-42. doi: 10.1242/dev.065870. Epub 2011 Aug 18.

Abstract

Studies of the olfactory epithelium model system have demonstrated that production of neurons is regulated by negative feedback. Previously, we showed that a locally produced signal, the TGFβ superfamily ligand GDF11, regulates the genesis of olfactory receptor neurons by inhibiting proliferation of the immediate neuronal precursors (INPs) that give rise to them. GDF11 is antagonized by follistatin (FST), which is also produced locally. Here, we show that Fst(-/-) mice exhibit dramatically decreased neurogenesis, a phenotype that can only be partially explained by increased GDF11 activity. Instead, a second FST-binding factor, activin βB (ACTβB), inhibits neurogenesis by a distinct mechanism: whereas GDF11 inhibits expansion of INPs, ACTβB inhibits expansion of stem and early progenitor cells. We present data supporting the concept that these latter cells, previously considered two distinct types, constitute a dynamic stem/progenitor population in which individual cells alternate expression of Sox2 and/or Ascl1. In addition, we demonstrate that interplay between ACTβB and GDF11 determines whether stem/progenitor cells adopt a glial versus neuronal fate. Altogether, the data indicate that the transition between stem cells and committed progenitors is neither sharp nor irreversible and that GDF11, ACTβB and FST are crucial components of a circuit that controls both total cell number and the ratio of neuronal versus glial cells in this system. Thus, our findings demonstrate a close connection between the signals involved in the control of tissue size and those that regulate the proportions of different cell types.

摘要

嗅上皮模型系统的研究表明,神经元的产生受负反馈调节。此前,我们表明,一种局部产生的信号,即 TGFβ 超家族配体 GDF11,通过抑制产生它们的直接神经元前体 (INP) 的增殖来调节嗅觉受体神经元的发生。GDF11 被局部产生的 follistatin (FST)拮抗。在这里,我们表明 Fst(-/-) 小鼠表现出明显减少的神经发生,这种表型只能部分解释为 GDF11 活性增加。相反,第二种 FST 结合因子,激活素 βB (ACTβB) 通过一种不同的机制抑制神经发生:尽管 GDF11 抑制 INP 的扩张,但 ACTβB 抑制干细胞和早期祖细胞的扩张。我们提供的数据支持这样一个概念,即这些先前被认为是两种不同类型的细胞,构成了一个动态的干细胞/祖细胞群体,其中单个细胞交替表达 Sox2 和/或 Ascl1。此外,我们证明了 ACTβB 和 GDF11 之间的相互作用决定了干细胞/祖细胞是选择胶质细胞还是神经元命运。总之,这些数据表明,干细胞和定向祖细胞之间的转变既不明显也不可逆,GDF11、ACTβB 和 FST 是控制该系统中总细胞数和神经元与胶质细胞比例的回路的关键组成部分。因此,我们的研究结果表明,参与控制组织大小的信号与调节不同细胞类型比例的信号之间存在密切联系。

相似文献

1
Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate.
Development. 2011 Oct;138(19):4131-42. doi: 10.1242/dev.065870. Epub 2011 Aug 18.
2
Foxg1 promotes olfactory neurogenesis by antagonizing Gdf11.
Development. 2009 May;136(9):1453-64. doi: 10.1242/dev.034967. Epub 2009 Mar 18.
3
Gdf11 facilitates temporal progression of neurogenesis in the developing spinal cord.
J Neurosci. 2011 Jan 19;31(3):883-93. doi: 10.1523/JNEUROSCI.2394-10.2011.
4
Autoregulation of neurogenesis by GDF11.
Neuron. 2003 Jan 23;37(2):197-207. doi: 10.1016/s0896-6273(02)01172-8.
5
GDF11 modulates NGN3+ islet progenitor cell number and promotes beta-cell differentiation in pancreas development.
Development. 2004 Dec;131(24):6163-74. doi: 10.1242/dev.01535. Epub 2004 Nov 17.
6
GDF11 promotes osteogenesis as opposed to MSTN, and follistatin, a MSTN/GDF11 inhibitor, increases muscle mass but weakens bone.
Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4910-4920. doi: 10.1073/pnas.1916034117. Epub 2020 Feb 18.
7
Ascl1 (Mash1) knockout perturbs differentiation of nonneuronal cells in olfactory epithelium.
PLoS One. 2012;7(12):e51737. doi: 10.1371/journal.pone.0051737. Epub 2012 Dec 17.
8
Follistatin dysregulation impaired trophoblast biological functions by GDF11-Smad2/3 axis in preeclampsia placentas.
Placenta. 2022 Apr;121:145-154. doi: 10.1016/j.placenta.2022.03.015. Epub 2022 Mar 22.
9
Fibroblast growth factor signaling regulates neurogenesis at multiple stages in the embryonic olfactory epithelium.
Stem Cells Dev. 2013 Feb 15;22(4):525-37. doi: 10.1089/scd.2012.0406. Epub 2013 Jan 11.
10
Cell lineages and the logic of proliferative control.
PLoS Biol. 2009 Jan 20;7(1):e15. doi: 10.1371/journal.pbio.1000015.

引用本文的文献

1
Strategies to Develop Regenerative Medicine Approaches for Olfactory Disorders.
Clin Exp Otorhinolaryngol. 2025 Aug;18(3):204-209. doi: 10.21053/ceo.2025-00065. Epub 2025 Apr 25.
2
The inherent fragility of collective proliferative control.
bioRxiv. 2024 Aug 19:2024.01.23.576783. doi: 10.1101/2024.01.23.576783.
3
Identity, lineage and fates of a temporally distinct progenitor population in the embryonic olfactory epithelium.
Dev Biol. 2023 Mar;495:76-91. doi: 10.1016/j.ydbio.2023.01.001. Epub 2023 Jan 7.
4
Tissue Homeostasis and Non-Homeostasis: From Cell Life Cycles to Organ States.
Annu Rev Cell Dev Biol. 2022 Oct 6;38:395-418. doi: 10.1146/annurev-cellbio-120420-114855. Epub 2022 Jul 18.
5
Spatial dynamics of feedback and feedforward regulation in cell lineages.
PLoS Comput Biol. 2022 May 6;18(5):e1010039. doi: 10.1371/journal.pcbi.1010039. eCollection 2022 May.
6
Lifespan of mature olfactory sensory neurons varies with location in the mouse olfactory epithelium and age of the animal.
J Comp Neurol. 2022 Aug;530(12):2238-2251. doi: 10.1002/cne.25330. Epub 2022 Apr 17.
7
Disparate progenitor cell populations contribute to maintenance and repair neurogenesis in the zebrafish olfactory epithelium.
Cell Tissue Res. 2022 May;388(2):331-358. doi: 10.1007/s00441-022-03597-x. Epub 2022 Mar 10.
8
Eph/Ephrin-Based Protein Complexes: The Importance of Interactions in Guiding Cellular Processes.
Front Mol Biosci. 2022 Jan 13;8:809364. doi: 10.3389/fmolb.2021.809364. eCollection 2021.
9
The GDF11 Promotes Nerve Regeneration After Sciatic Nerve Injury in Adult Rats by Promoting Axon Growth and Inhibiting Neuronal Apoptosis.
Front Bioeng Biotechnol. 2022 Jan 4;9:803052. doi: 10.3389/fbioe.2021.803052. eCollection 2021.

本文引用的文献

2
Expression of pax6 and sox2 in adult olfactory epithelium.
J Comp Neurol. 2010 Nov 1;518(21):4395-418. doi: 10.1002/cne.22463.
3
Regulation of hematopoietic stem cell differentiation by a single ubiquitin ligase-substrate complex.
Nat Immunol. 2010 Mar;11(3):207-15. doi: 10.1038/ni.1839. Epub 2010 Jan 17.
4
Neuronal subtype specification within a lineage by opposing temporal feed-forward loops.
Cell. 2009 Nov 25;139(5):969-82. doi: 10.1016/j.cell.2009.10.032.
5
SOX-partner code for cell specification: Regulatory target selection and underlying molecular mechanisms.
Int J Biochem Cell Biol. 2010 Mar;42(3):391-9. doi: 10.1016/j.biocel.2009.09.003. Epub 2009 Sep 9.
6
Cell-cell interaction networks regulate blood stem and progenitor cell fate.
Mol Syst Biol. 2009;5:293. doi: 10.1038/msb.2009.49. Epub 2009 Jul 28.
7
Foxg1 promotes olfactory neurogenesis by antagonizing Gdf11.
Development. 2009 May;136(9):1453-64. doi: 10.1242/dev.034967. Epub 2009 Mar 18.
8
Cell lineages and the logic of proliferative control.
PLoS Biol. 2009 Jan 20;7(1):e15. doi: 10.1371/journal.pbio.1000015.
9
Wnt and EGF pathways act together to induce C. elegans male hook development.
Dev Biol. 2009 Mar 15;327(2):419-32. doi: 10.1016/j.ydbio.2008.12.023. Epub 2008 Dec 30.
10
Maintaining epitheliopoietic potency when culturing olfactory progenitors.
Exp Neurol. 2008 Nov;214(1):25-36. doi: 10.1016/j.expneurol.2008.07.012. Epub 2008 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验