Suppr超能文献

面部吸引力的统计模型。

A statistical model of facial attractiveness.

机构信息

Psychology Department, New York University, New York, NY 10003, USA.

出版信息

Psychol Sci. 2011 Sep;22(9):1183-90. doi: 10.1177/0956797611419169. Epub 2011 Aug 18.

Abstract

Previous research has identified facial averageness and sexual dimorphism as important factors in facial attractiveness. The averageness and sexual dimorphism accounts provide important first steps in understanding what makes faces attractive, and should be valued for their parsimony. However, we show that they explain relatively little of the variance in facial attractiveness, particularly for male faces. As an alternative to these accounts, we built a regression model that defines attractiveness as a function of a face's position in a multidimensional face space. The model provides much more predictive power than the averageness and sexual dimorphism accounts and reveals previously unreported components of attractiveness. The model shows that averageness is attractive in some dimensions but not in others and resolves previous contradictory reports about the effects of sexual dimorphism on the attractiveness of male faces.

摘要

先前的研究已经确定了面部平均性和性别二态性是面部吸引力的重要因素。平均性和性别二态性解释为理解什么使面孔有吸引力提供了重要的第一步,并且应该因其简约而受到重视。然而,我们表明,它们对面部吸引力的变化解释相对较少,特别是对于男性面孔。作为这些解释的替代方法,我们构建了一个回归模型,该模型将吸引力定义为面孔在多维面部空间中的位置的函数。该模型提供了比平均性和性别二态性解释更高的预测能力,并揭示了以前未报告的吸引力组成部分。该模型表明,在某些维度上,平均性是吸引人的,但在其他维度上则不然,并且解决了关于性别二态性对男性面孔吸引力的影响的先前相互矛盾的报告。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验