Suppr超能文献

经典统计学和人工神经网络分析评估 1 型糖尿病患者的低骨密度及其预测因素。

Low bone mineral density and its predictors in type 1 diabetic patients evaluated by the classic statistics and artificial neural network analysis.

机构信息

Department of Medical Sciences, University of Milan, Endocrinology and Diabetology Unit, Fondazione IRRCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy.

出版信息

Diabetes Care. 2011 Oct;34(10):2186-91. doi: 10.2337/dc11-0764. Epub 2011 Aug 18.

Abstract

OBJECTIVE

To investigate factors associated with bone mineral density (BMD) in type 1 diabetes by classic statistic and artificial neural networks.

RESEARCH DESIGN AND METHODS

A total of 175 eugonadal type 1 diabetic patients (age 32.8 ± 8.4 years) and 151 age- and BMI-matched control subjects (age 32.6 ± 4.5 years) were studied. In all subjects, BMI and BMD (as Z score) at the lumbar spine (LS-BMD) and femur (F-BMD) were measured. Daily insulin dose (DID), age at diagnosis, presence of complications, creatinine clearance (ClCr), and HbA(1c) were determined.

RESULTS

LS- and F-BMD levels were lower in patients (-0.11 ± 1.2 and -0.32 ± 1.4, respectively) than in control subjects (0.59 ± 1, P < 0.0001, and 0.63 ± 1, P < 0.0001, respectively). LS-BMD was independently associated with BMI and DID, whereas F-BMD was associated with BMI and ClCr. The cutoffs for predicting low BMD were as follows: BMI <23.5 kg/m(2), DID >0.67 units/kg, and ClCr <88.8 mL/min. The presence of all of these risk factors had a positive predictive value, and their absence had a negative predictive value for low BMD of 62.9 and 84.2%, respectively. Data were also analyzed using the TWIST system in combination with supervised artificial neural networks and a semantic connectivity map. The TWIST system selected 11 and 12 variables for F-BMD and LS-BMD prediction, which discriminated between high and low BMD with 67 and 66% accuracy, respectively. The connectivity map showed that low BMD at both sites was indirectly connected with HbA(1c) through chronic diabetes complications.

CONCLUSIONS

In type 1 diabetes, low BMD is associated with low BMI and low ClCr and high DID. Chronic complications negatively influence BMD.

摘要

目的

通过经典统计学和人工神经网络研究 1 型糖尿病患者骨密度(BMD)的相关因素。

研究设计与方法

共研究了 175 名生育正常的 1 型糖尿病患者(年龄 32.8 ± 8.4 岁)和 151 名年龄和 BMI 匹配的对照组(年龄 32.6 ± 4.5 岁)。在所有受试者中,测量了腰椎(LS-BMD)和股骨(F-BMD)的 BMI 和 BMD(Z 评分)。测定了每日胰岛素剂量(DID)、诊断时年龄、并发症存在情况、肌酐清除率(ClCr)和糖化血红蛋白(HbA1c)。

结果

患者的 LS-BMD 和 F-BMD 水平均低于对照组(分别为-0.11 ± 1.2 和-0.32 ± 1.4 比 0.59 ± 1,P < 0.0001 和 0.63 ± 1,P < 0.0001)。LS-BMD 与 BMI 和 DID 独立相关,而 F-BMD 与 BMI 和 ClCr 相关。预测低 BMD 的截止值如下:BMI <23.5 kg/m2,DID >0.67 单位/kg,ClCr <88.8 mL/min。这些危险因素的存在具有阳性预测值,其不存在具有阴性预测值,分别为 62.9%和 84.2%的低 BMD。数据还使用 TWIST 系统结合有监督人工神经网络和语义连接图进行了分析。TWIST 系统分别选择 11 个和 12 个变量来预测 F-BMD 和 LS-BMD,对高和低 BMD 的区分准确率分别为 67%和 66%。连接图显示,两个部位的低 BMD 通过慢性糖尿病并发症与 HbA1c 间接相关。

结论

在 1 型糖尿病中,低 BMD 与低 BMI 和低 ClCr 以及高 DID 相关。慢性并发症对 BMD 有负面影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c4/3177712/3c5525a85cdd/2186fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验