Suppr超能文献

语义连接图谱:一种数据库中自适应自组织知识发现方法。胃食管反流病研究经验。

The semantic connectivity map: an adapting self-organising knowledge discovery method in data bases. Experience in gastro-oesophageal reflux disease.

作者信息

Buscema Massimo, Grossi Enzo

机构信息

Semeion Research Centre of Sciences of Communication, Via Sersale 117-CP 00128, Rome, Italy.

出版信息

Int J Data Min Bioinform. 2008;2(4):362-404. doi: 10.1504/ijdmb.2008.022159.

Abstract

We describe here a new mapping method able to find out connectivity traces among variables thanks to an artificial adaptive system, the Auto Contractive Map (AutoCM), able to define the strength of the associations of each variable with all the others in a dataset. After the training phase, the weights matrix of the AutoCM represents the map of the main connections between the variables. The example of gastro-oesophageal reflux disease data base is extremely useful to figure out how this new approach can help to re-design the overall structure of factors related to complex and specific diseases description.

摘要

我们在此描述一种新的映射方法,借助人工自适应系统——自动收缩映射(AutoCM),能够找出变量之间的连通性轨迹,该系统能够定义数据集中每个变量与其他所有变量的关联强度。在训练阶段之后,AutoCM的权重矩阵代表了变量之间主要连接的映射。胃食管反流病数据库的例子对于弄清楚这种新方法如何有助于重新设计与复杂和特定疾病描述相关的因素的整体结构非常有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验