Suppr超能文献

用于建模复杂生态问题的集成贝叶斯网络框架。

Integrated Bayesian network framework for modeling complex ecological issues.

机构信息

Discipline of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.

出版信息

Integr Environ Assess Manag. 2012 Jul;8(3):480-90. doi: 10.1002/ieam.274. Epub 2011 Nov 18.

Abstract

The management of environmental problems is multifaceted, requiring varied and sometimes conflicting objectives and perspectives to be considered. Bayesian network (BN) modeling facilitates the integration of information from diverse sources and is well suited to tackling the management challenges of complex environmental problems. However, combining several perspectives in one model can lead to large, unwieldy BNs that are difficult to maintain and understand. Conversely, an oversimplified model may lead to an unrealistic representation of the environmental problem. Environmental managers require the current research and available knowledge about an environmental problem of interest to be consolidated in a meaningful way, thereby enabling the assessment of potential impacts and different courses of action. Previous investigations of the environmental problem of interest may have already resulted in the construction of several disparate ecological models. On the other hand, the opportunity may exist to initiate this modeling. In the first instance, the challenge is to integrate existing models and to merge the information and perspectives from these models. In the second instance, the challenge is to include different aspects of the environmental problem incorporating both the scientific and management requirements. Although the paths leading to the combined model may differ for these 2 situations, the common objective is to design an integrated model that captures the available information and research, yet is simple to maintain, expand, and refine. BN modeling is typically an iterative process, and we describe a heuristic method, the iterative Bayesian network development cycle (IBNDC), for the development of integrated BN models that are suitable for both situations outlined above. The IBNDC approach facilitates object-oriented BN (OOBN) modeling, arguably viewed as the next logical step in adaptive management modeling, and that embraces iterative development. The benefits of OOBN modeling in the environmental community have not yet been fully realized in environmental management research. The IBNDC approach to BN modeling is described in the context of 2 case studies. The first is the initiation of blooms of Lyngbya majuscula, a blue-green algae, in Deception Bay, Australia where 3 existing models are being integrated, and the second case study is the viability of the free-ranging cheetah (Acinonyx jubatus) population in Namibia where an integrated OOBN model is created consisting of 3 independent subnetworks, each describing a particular aspect of free-ranging cheetah population conservation.

摘要

环境问题的管理是多方面的,需要考虑各种不同的目标和观点,有时甚至是相互冲突的。贝叶斯网络(BN)建模有助于整合来自不同来源的信息,非常适合解决复杂环境问题的管理挑战。然而,将几个视角结合到一个模型中可能会导致庞大、难以处理的 BN,使其难以维护和理解。相反,过于简化的模型可能会导致对环境问题的不现实表示。环境管理者需要以有意义的方式整合他们当前对感兴趣的环境问题的研究和可用知识,从而能够评估潜在的影响和不同的行动方案。之前对感兴趣的环境问题的研究可能已经导致了几个不同的生态模型的构建。另一方面,也可能有机会启动这种建模。在第一种情况下,挑战是整合现有的模型,并合并这些模型的信息和视角。在第二种情况下,挑战是纳入环境问题的不同方面,同时考虑科学和管理要求。尽管这两种情况通向组合模型的路径可能不同,但共同的目标是设计一个既能捕捉现有信息和研究,又易于维护、扩展和改进的综合模型。BN 建模通常是一个迭代过程,我们描述了一种启发式方法,即迭代贝叶斯网络开发周期(IBNDC),用于开发适合上述两种情况的综合 BN 模型。IBNDC 方法促进了面向对象的 BN(OOBN)建模,这可以被视为自适应管理建模的下一个逻辑步骤,并支持迭代开发。OOBN 建模在环境社区中的优势尚未在环境管理研究中得到充分体现。IBNDC 方法在 BN 建模中的应用在两个案例研究中进行了描述。第一个案例是澳大利亚迪森湾 Lyngbya majuscula 蓝绿藻大量繁殖的启动,其中正在整合 3 个现有模型,第二个案例是纳米比亚自由放养的猎豹(Acinonyx jubatus)种群的可行性,其中创建了一个由 3 个独立子网组成的综合 OOBN 模型,每个子网描述了自由放养猎豹种群保护的一个特定方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验