Department of Biotechnology (Biology VI), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
J Nanobiotechnology. 2011 Aug 19;9:33. doi: 10.1186/1477-3155-9-33.
Channel proteins like FhuA can be an alternative to artificial chemically synthesized nanopores. To reach such goals, channel proteins must be flexible enough to be modified in their geometry, i.e. length and diameter. As continuation of a previous study in which we addressed the lengthening of the channel, here we report the increasing of the channel diameter by genetic engineering.
The FhuA Δ1-159 diameter increase has been obtained by doubling the amino acid sequence of the first two N-terminal β-strands, resulting in variant FhuA Δ1-159 Exp. The total number of β-strands increased from 22 to 24 and the channel surface area is expected to increase by ~16%. The secondary structure analysis by circular dichroism (CD) spectroscopy shows a high β-sheet content, suggesting the correct folding of FhuA Δ1-159 Exp. To further prove the FhuA Δ1-159 Exp channel functionality, kinetic measurement using the HRP-TMB assay (HRP = Horse Radish Peroxidase, TMB = 3,3',5,5'-tetramethylbenzidine) were conducted. The results indicated a 17% faster diffusion kinetic for FhuA Δ1-159 Exp as compared to FhuA Δ1-159, well correlated to the expected channel surface area increase of ~16%.
In this study using a simple "semi rational" approach the FhuA Δ1-159 diameter was enlarged. By combining the actual results with the previous ones on the FhuA Δ1-159 lengthening a new set of synthetic nanochannels with desired lengths and diameters can be produced, broadening the FhuA Δ1-159 applications. As large scale protein production is possible our approach can give a contribution to nanochannel industrial applications.
像 FhuA 这样的通道蛋白可以作为人工化学合成纳米孔的替代品。为了达到这些目标,通道蛋白必须足够灵活,以便在其几何形状(即长度和直径)上进行修改。作为之前研究的延续,我们在该研究中解决了通道的延长问题,在这里我们报告通过遗传工程增加通道的直径。
通过将前两个 N 端β-链的氨基酸序列加倍,获得了 FhuA Δ1-159 直径的增加,从而得到变体 FhuA Δ1-159 Exp。β-链的总数从 22 增加到 24,预计通道表面积增加约 16%。圆二色性(CD)光谱的二级结构分析显示出高β-折叠含量,表明 FhuA Δ1-159 Exp 正确折叠。为了进一步证明 FhuA Δ1-159 Exp 通道的功能,使用 HRP-TMB 测定法(HRP =辣根过氧化物酶,TMB = 3,3',5,5'-四甲基联苯胺)进行了动力学测量。结果表明,与 FhuA Δ1-159 相比,FhuA Δ1-159 Exp 的扩散动力学快 17%,与预期的约 16%的通道表面积增加很好地相关。
在这项使用简单“半理性”方法的研究中,扩大了 FhuA Δ1-159 的直径。通过将 FhuA Δ1-159 延长的实际结果与之前的结果结合起来,可以生产出具有所需长度和直径的新的一组合成纳米通道,拓宽了 FhuA Δ1-159 的应用。由于可以进行大规模的蛋白质生产,我们的方法可以为纳米通道的工业应用做出贡献。