Suppr超能文献

基于信号通路的胃癌分类和预后的蛋白质标志物研究。

Protein signatures for classification and prognosis of gastric cancer a signaling pathway-based approach.

机构信息

Department of General Surgery, The First Hospital, Jilin University, Changchun, China.

出版信息

Am J Pathol. 2011 Oct;179(4):1657-66. doi: 10.1016/j.ajpath.2011.06.010. Epub 2011 Aug 18.

Abstract

Current methods have limited accuracy in predicting survival and stratifying patients with gastric cancer for appropriate treatment. We sought to identify protein signatures of gastric cancer for classification and prognostication. The Protein Pathway Array (initial study) and Western blot (confirmation) were used to assess the protein expression in a total of 199 fresh frozen gastric samples. There were 56 paired samples divided into a training set (n = 37) and a validation set (n = 19) for the identification of differentially expressed proteins between tumor and normal tissues. There were 56 tumor samples used to identify proteins correlating with tumor and nodal staging. All 93 tumor samples were used to identify candidate proteins for predicting survival. We confirmed the survival prediction of the candidate proteins by using an additional cohort of gastric cancer samples (n = 50). There were 22 proteins differentially expressed between normal and tumor tissues. Nine proteins were selected to build the predictor to classify normal and tumor samples. Ten proteins were differentially expressed among different T stages and four of these were associated with invasive behavior. An additional four proteins were associated with lymph node metastasis. Two proteins were identified as independent risk factors for overall survival. This study indicated that some dysregulated signaling proteins could be selected as useful biomarkers for tumor classification and predicting outcome in gastric cancer patients.

摘要

目前的方法在预测胃癌患者的生存和分层以进行适当治疗方面的准确性有限。我们试图确定胃癌的蛋白质特征,以进行分类和预后。采用蛋白质通路阵列(初步研究)和 Western blot(验证)评估了总共 199 个新鲜冷冻胃癌样本的蛋白质表达。有 56 对配对样本分为训练集(n=37)和验证集(n=19),用于鉴定肿瘤组织和正常组织之间差异表达的蛋白质。有 56 个肿瘤样本用于鉴定与肿瘤和淋巴结分期相关的蛋白质。所有 93 个肿瘤样本用于鉴定候选蛋白质以预测生存。我们通过使用另外一组胃癌样本(n=50)证实了候选蛋白质的生存预测。有 22 种蛋白质在正常组织和肿瘤组织之间差异表达。选择 9 种蛋白质构建预测因子以分类正常和肿瘤样本。10 种蛋白质在不同的 T 分期之间差异表达,其中 4 种与侵袭行为有关。另外 4 种蛋白质与淋巴结转移有关。两种蛋白质被确定为总生存的独立危险因素。这项研究表明,一些失调的信号转导蛋白质可以被选择为肿瘤分类和预测胃癌患者预后的有用生物标志物。

相似文献

2
Protein predictive signatures for lymph node metastasis of gastric cancer.胃癌淋巴结转移的蛋白预测标志物。
Int J Cancer. 2013 Apr 15;132(8):1851-9. doi: 10.1002/ijc.27864. Epub 2012 Oct 25.
4
Protein profiling of Helicobacter pylori-associated gastric cancer.幽门螺杆菌相关性胃癌的蛋白质组学分析。
Am J Pathol. 2014 May;184(5):1343-54. doi: 10.1016/j.ajpath.2014.01.027. Epub 2014 Feb 28.

引用本文的文献

7
Protein Profiling of Bladder Urothelial Cell Carcinoma.膀胱尿路上皮细胞癌的蛋白质谱分析
PLoS One. 2016 Sep 14;11(9):e0161922. doi: 10.1371/journal.pone.0161922. eCollection 2016.
8
Serum biomarker panels for diagnosis of gastric cancer.用于诊断胃癌的血清生物标志物组合
Onco Targets Ther. 2016 Apr 26;9:2455-63. doi: 10.2147/OTT.S86139. eCollection 2016.
10
Protein profiling of preeclampsia placental tissues.子痫前期胎盘组织的蛋白质谱分析。
PLoS One. 2014 Nov 13;9(11):e112890. doi: 10.1371/journal.pone.0112890. eCollection 2014.

本文引用的文献

8
Cancer statistics, 2008.2008年癌症统计数据。
CA Cancer J Clin. 2008 Mar-Apr;58(2):71-96. doi: 10.3322/CA.2007.0010. Epub 2008 Feb 20.
10
Diet and the risk of gastric cancer: review of epidemiological evidence.饮食与胃癌风险:流行病学证据综述
Gastric Cancer. 2007;10(2):75-83. doi: 10.1007/s10120-007-0420-0. Epub 2007 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验