Institute of Pharmacology & Toxicology, University of Zürich, Zürich, Switzerland.
Prog Brain Res. 2011;193:51-61. doi: 10.1016/B978-0-444-53839-0.00004-1.
The contribution of slow brain oscillations including delta, theta, alpha, and sigma frequencies (0.5-16 Hz) to the sleep electroencephalography (EEG) is finely regulated by circadian and homeostatic influences, and reflects functional aspects of wakefulness and sleep. Accumulating evidence demonstrates that individual sleep EEG patterns in non-rapid-eye-movement (NREM) sleep and rapid-eye-movement (REM) sleep are heritable traits. More specifically, multiple recordings in the same individuals, as well as studies in monozygotic and dizygotic twins suggest that a very high percentage of the robust interindividual variation and the high intraindividual stability of sleep EEG profiles can be explained by genetic factors (> 90% in distinct frequency bands). Still little is known about which genes contribute to different sleep EEG phenotypes in healthy humans. The genetic variations that have been identified to date include functional polymorphisms of the clock gene PER3 and of genes contributing to signal transduction pathways involving adenosine (ADA, ADORA2A), brain-derived neurotrophic factor (BDNF), dopamine (COMT), and prion protein (PRNP). Some of these polymorphisms profoundly modulate sleep EEG profiles; their effects are reviewed here. It is concluded that the search for genetic contributions to slow sleep EEG oscillations constitutes a promising avenue to identify molecular mechanisms underlying sleep-wake regulation in humans.
慢波脑振荡(包括 delta、theta、alpha 和 sigma 频率(0.5-16 Hz))对睡眠脑电图(EEG)的贡献受到昼夜节律和内稳态的精细调节,反映了觉醒和睡眠的功能方面。越来越多的证据表明,非快速眼动(NREM)睡眠和快速眼动(REM)睡眠中的个体睡眠 EEG 模式是可遗传的特征。更具体地说,同一个体的多次记录以及同卵和异卵双胞胎的研究表明,睡眠 EEG 谱的强个体间变异和高个体内稳定性的很大一部分可以用遗传因素来解释(在不同的频带中>90%)。然而,对于哪些基因有助于健康人类的不同睡眠 EEG 表型,人们知之甚少。迄今为止已确定的遗传变异包括时钟基因 PER3 的功能多态性,以及参与涉及腺苷(ADA、ADORA2A)、脑源性神经营养因子(BDNF)、多巴胺(COMT)和朊病毒蛋白(PRNP)的信号转导途径的基因的遗传多态性。其中一些多态性深刻地调节了睡眠 EEG 谱;本文回顾了它们的影响。结论是,寻找对慢波睡眠 EEG 振荡的遗传贡献,是确定人类睡眠-觉醒调节的分子机制的一个有前途的途径。