Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan.
Am J Physiol Heart Circ Physiol. 2011 Nov;301(5):H1850-61. doi: 10.1152/ajpheart.00502.2011. Epub 2011 Aug 19.
Little is known about the vascular contractile responsiveness to, and signaling pathways for, extracellular nucleotides in the chronic stage of type 2 diabetes or whether the ANG II type 1 receptor blocker losartan might alter such responses. We hypothesized that nucleotide-induced arterial contractions are augmented in diabetic Goto-Kakizaki (GK) rats and that treatment with losartan would normalize the contractions. Here, we investigated the vasoconstrictor effects of ATP/UTP in superior mesenteric arteries isolated from GK rats (37-42 wk old) that had or had not received 2 wk of losartan (25 mg·kg(-1)·day(-1)). In arteries from GK rats (vs. those from Wistar rats), 1) ATP- and UTP-induced contractions, which were blocked by the nonselective P2 antagonist suramin, were enhanced, and these enhancements were suppressed by endothelial denudation, by cyclooxygenase (COX) inhibitors, or by a cytosolic phospholipase A(2) (cPLA(2)) inhibitor; 2) both nucleotides induced increased release of PGE(2) and PGF(2α); 3) nucleotide-stimulated cPLA(2) phosphorylations were increased; 4) COX-1 and COX-2 expressions were increased; and 5) neither P2Y2 nor P2Y6 receptor expression differed, but P2Y4 receptor expression was decreased. Mesenteric arteries from GK rats treated with losartan exhibited (vs. untreated GK) 1) reduced nucleotide-induced contractions, 2) suppressed UTP-induced release of PGE(2) and PGF(2α), 3) suppressed UTP-stimulated cPLA(2) phosphorylation, 4) normalized expressions of COX-2 and P2Y4 receptors, and 5) reduced superoxide generation. Our data suggest that the diabetes-related enhancement of ATP-mediated vasoconstriction was due to P2Y receptor-mediated activation of the cPLA(2)/COX pathway and, moreover, that losartan normalizes such contractions by a suppressing action within this pathway.
关于 2 型糖尿病慢性期细胞外核苷酸的血管收缩反应性和信号通路,以及血管紧张素 II 型 1 受体阻滞剂氯沙坦是否可能改变这种反应,目前知之甚少。我们假设,在糖尿病 Goto-Kakizaki (GK) 大鼠中,核苷酸诱导的动脉收缩增强,并且氯沙坦治疗会使收缩正常化。在这里,我们研究了来自 GK 大鼠(37-42 周龄)分离的肠系膜动脉中 ATP/UTP 的血管收缩作用,这些大鼠接受或未接受 2 周的氯沙坦(25 mg·kg(-1)·day(-1))治疗。在来自 GK 大鼠的动脉中(与来自 Wistar 大鼠的动脉相比),1)ATP 和 UTP 诱导的收缩被非选择性 P2 拮抗剂苏拉明阻断,增强了这些增强,内皮剥脱、环氧化酶 (COX) 抑制剂或细胞质 PLA2 (cPLA2) 抑制剂可抑制收缩;2)两种核苷酸均诱导 PGE2 和 PGF2α 的释放增加;3)核苷酸刺激的 cPLA2 磷酸化增加;4)COX-1 和 COX-2 的表达增加;5)P2Y2 和 P2Y6 受体表达没有差异,但 P2Y4 受体表达减少。用氯沙坦治疗的 GK 大鼠的肠系膜动脉表现出(与未治疗的 GK 大鼠相比)1)减少了核苷酸诱导的收缩,2)抑制了 UTP 诱导的 PGE2 和 PGF2α 的释放,3)抑制了 UTP 刺激的 cPLA2 磷酸化,4)COX-2 和 P2Y4 受体的表达正常化,以及 5)超氧化物生成减少。我们的数据表明,糖尿病相关的 ATP 介导的血管收缩增强是由于 P2Y 受体介导的 cPLA2/COX 途径的激活引起的,而且氯沙坦通过抑制该途径中的作用使这种收缩正常化。