Suppr超能文献

逆问题中最优设计方法的比较

Comparison of Optimal Design Methods in Inverse Problems.

作者信息

Banks H T, Holm Kathleen, Kappel Franz

机构信息

Center for Quantitative Sciences in Biomedicine, North Carolina State University, Raleigh, NC 27695-8213.

出版信息

Inverse Probl. 2011 Jul 1;27(7). doi: 10.1088/0266-5611/27/7/075002.

Abstract

Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher Information Matrix (FIM). A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criteria with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model [13], the standard harmonic oscillator model [13] and a popular glucose regulation model [16, 19, 29].

摘要

用于逆问题或参数估计问题的典型最优设计方法旨在通过最小化与参数估计中产生的误差相关的特定成本函数来选择最优采样分布。人们希望逆问题使用根据最优采样分布收集的数据产生具有更高准确性的参数估计。在这里,我们在采样时间分布的一般优化问题的背景下阐述经典的最优设计问题。我们提出了一个基于普罗霍罗夫度量的新理论框架,该框架允许人们简洁而严格地处理基于费希尔信息矩阵(FIM)的任何最优设计标准。这个框架还包括一个基本的近似理论。然后在这个框架的背景下引入了一种新的最优设计,即SE最优设计(标准误差最优设计)。我们将这种新的设计标准与更传统的D最优设计和E最优设计进行比较。每个设计的最优采样分布用于计算和比较标准误差;参数的标准误差使用渐近理论或自助法以及最优网格来计算。我们用三个例子来说明这些想法:Verhulst-Pearl逻辑斯谛种群模型[13]、标准谐振子模型[13]和一个流行的葡萄糖调节模型[16, 19, 29]。

相似文献

1
Comparison of Optimal Design Methods in Inverse Problems.
Inverse Probl. 2011 Jul 1;27(7). doi: 10.1088/0266-5611/27/7/075002.
2
The effect of Fisher information matrix approximation methods in population optimal design calculations.
J Pharmacokinet Pharmacodyn. 2016 Dec;43(6):609-619. doi: 10.1007/s10928-016-9499-4. Epub 2016 Nov 1.
3
Optimal clinical trial design based on a dichotomous Markov-chain mixed-effect sleep model.
J Pharmacokinet Pharmacodyn. 2014 Dec;41(6):639-54. doi: 10.1007/s10928-014-9391-z. Epub 2014 Oct 12.
4
Standard Error Computations for Uncertainty Quantification in Inverse Problems: Asymptotic Theory vs. Bootstrapping.
Math Comput Model. 2010 Nov 1;52(9-10):1610-1625. doi: 10.1016/j.mcm.2010.06.026.
5
Comparison of ED, EID, and API criteria for the robust optimization of sampling times in pharmacokinetics.
J Pharmacokinet Biopharm. 1997 Aug;25(4):515-37. doi: 10.1023/a:1025701327672.
7
8
Robust designs in longitudinal studies accounting for parameter and model uncertainties - application to count data.
J Biopharm Stat. 2020;30(1):31-45. doi: 10.1080/10543406.2019.1607367. Epub 2019 Apr 27.
9
Nonparametric estimation of Fisher information from real data.
Phys Rev E. 2016 Feb;93(2):023301. doi: 10.1103/PhysRevE.93.023301. Epub 2016 Feb 8.
10
Two-Phase Sampling Designs for Data Validation in Settings with Covariate Measurement Error and Continuous Outcome.
J R Stat Soc Ser A Stat Soc. 2021 Oct;184(4):1368-1389. doi: 10.1111/rssa.12689. Epub 2021 Apr 15.

引用本文的文献

1
Inference-based assessment of parameter identifiability in nonlinear biological models.
J R Soc Interface. 2018 Jul;15(144). doi: 10.1098/rsif.2018.0318.
2
Modeling Immune Response to BK Virus Infection and Donor Kidney in Renal Transplant Recipients.
Inverse Probl Sci Eng. 2016 Jan 1;24(1):127-152. doi: 10.1080/17415977.2015.1017484. Epub 2015 Mar 13.
3
Optimal Design of Non-equilibrium Experiments for Genetic Network Interrogation.
Appl Math Lett. 2015 Feb 1;40:84-89. doi: 10.1016/j.aml.2014.09.013.
4
Experimental Design for Vector Output Systems.
Inverse Probl Sci Eng. 2014 Jan 1;22(4):557-590. doi: 10.1080/17415977.2013.797973.
5
A novel statistical analysis and interpretation of flow cytometry data.
J Biol Dyn. 2013;7(1):96-132. doi: 10.1080/17513758.2013.812753.
6
Experimental Design for Distributed Parameter Vector Systems.
Appl Math Lett. 2013 Jan 1;26(1):10-14. doi: 10.1016/j.aml.2012.08.003.
7
Modelling and optimal control of immune response of renal transplant recipients.
J Biol Dyn. 2012;6(2):539-67. doi: 10.1080/17513758.2012.655328. Epub 2012 Feb 1.
8
Host immune responses that promote initial HIV spread.
J Theor Biol. 2011 Nov 21;289:17-35. doi: 10.1016/j.jtbi.2011.08.012. Epub 2011 Aug 22.

本文引用的文献

1
Standard Error Computations for Uncertainty Quantification in Inverse Problems: Asymptotic Theory vs. Bootstrapping.
Math Comput Model. 2010 Nov 1;52(9-10):1610-1625. doi: 10.1016/j.mcm.2010.06.026.
2
Modelling HIV immune response and validation with clinical data.
J Biol Dyn. 2008 Oct;2(4):357-85. doi: 10.1080/17513750701813184.
3
Mathematical modelling of the intravenous glucose tolerance test.
J Math Biol. 2000 Feb;40(2):136-68. doi: 10.1007/s002850050007.
7
Quantitative estimation of insulin sensitivity.
Am J Physiol. 1979 Jun;236(6):E667-77. doi: 10.1152/ajpendo.1979.236.6.E667.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验