Banks H T, Holm Kathleen, Kappel Franz
Center for Quantitative Sciences in Biomedicine, North Carolina State University, Raleigh, NC 27695-8213.
Inverse Probl. 2011 Jul 1;27(7). doi: 10.1088/0266-5611/27/7/075002.
Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher Information Matrix (FIM). A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criteria with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model [13], the standard harmonic oscillator model [13] and a popular glucose regulation model [16, 19, 29].
用于逆问题或参数估计问题的典型最优设计方法旨在通过最小化与参数估计中产生的误差相关的特定成本函数来选择最优采样分布。人们希望逆问题使用根据最优采样分布收集的数据产生具有更高准确性的参数估计。在这里,我们在采样时间分布的一般优化问题的背景下阐述经典的最优设计问题。我们提出了一个基于普罗霍罗夫度量的新理论框架,该框架允许人们简洁而严格地处理基于费希尔信息矩阵(FIM)的任何最优设计标准。这个框架还包括一个基本的近似理论。然后在这个框架的背景下引入了一种新的最优设计,即SE最优设计(标准误差最优设计)。我们将这种新的设计标准与更传统的D最优设计和E最优设计进行比较。每个设计的最优采样分布用于计算和比较标准误差;参数的标准误差使用渐近理论或自助法以及最优网格来计算。我们用三个例子来说明这些想法:Verhulst-Pearl逻辑斯谛种群模型[13]、标准谐振子模型[13]和一个流行的葡萄糖调节模型[16, 19, 29]。