Suppr超能文献

基于烷硫醇的金-硫界面原子结构的支化控制。

Chain-branching control of the atomic structure of alkanethiol-based gold-sulfur interfaces.

机构信息

Centre for Clean Environment and Energy, Griffith School of Environment, Griffith University, Gold Coast, QLD 4222, Australia.

出版信息

J Am Chem Soc. 2011 Sep 28;133(38):14856-9. doi: 10.1021/ja204958h. Epub 2011 Sep 6.

Abstract

Density functional theory structure calculations at 0 K and simulations at 300 K of observed high-resolution in situ scanning tunneling microscopy (STM) images reveal three different atomic-interface structures for the self-assembled monolayers (SAMs) of three isomeric butanethiols on Au(111): direct binding to the Au(111) surface without pitting, binding to adatoms above a regular surface with extensive pitting, and binding to adatoms with local surface vacancies and some pitting. Thermal motions are shown to produce some observed STM features, with a very tight energy balance controlling the observed structures. Variation of the degree of substitution on the α carbon is found to significantly change the relative energies for interaction of the different types of adatom structures with the surface, while the nature of the surface cell, controlled primarily by inter-adsorbate steric interactions, controls substrate reorganization energies and adsorbate distortion energies. Most significantly, by manipulating these features, chemical control of the adsorbate can produce stable interfaces with surface pitting eliminated, providing new perspectives for technological applications of SAMs.

摘要

采用 0 K 的密度泛函理论结构计算和 300 K 的模拟,对原位高分辨率扫描隧道显微镜(STM)图像进行了观察,揭示了三种不同的原子-界面结构,用于自组装的三种同分异构丁硫醇的单分子层(SAM)在金(111)上:直接与金(111)表面结合而无凹坑,与表面上的原子结合而有广泛的凹坑,与具有局部表面空位和一些凹坑的原子结合。热运动被证明会产生一些观察到的 STM 特征,非常紧密的能量平衡控制着观察到的结构。发现α碳原子的取代度的变化显著地改变了不同类型的吸附原子结构与表面相互作用的相对能量,而表面单元的性质,主要由吸附体间的空间位阻相互作用控制,控制着基质的重组能和吸附体的变形能。最重要的是,通过操纵这些特征,可以对吸附体进行化学控制,从而产生没有表面凹坑的稳定界面,为 SAM 的技术应用提供了新的视角。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验