Suppr超能文献

感知和识别记忆中的二项 ROC 曲线是弯曲的。

Binary ROCs in perception and recognition memory are curved.

机构信息

Department of Psychology, University of Massachusetts Amherst, MA, USA.

出版信息

J Exp Psychol Learn Mem Cogn. 2012 Jan;38(1):130-51. doi: 10.1037/a0024957. Epub 2011 Aug 22.

Abstract

In recognition memory, a classic finding is that receiver operating characteristics (ROCs) are curvilinear. This has been taken to support the fundamental assumptions of signal detection theory (SDT) over discrete-state models such as the double high-threshold model (2HTM), which predicts linear ROCs. Recently, however, Bröder and Schütz (2009) challenged this argument by noting that most of the data on which support for SDT is based have involved confidence ratings. The authors argued that certain types of rating scale usage may result in curved ROCs even if the generating process is thresholded in nature. From this point of view, only ROCs constructed via experimental bias manipulations are useful for discriminating between the models. Bröder and Schütz conducted a meta-analysis and new experiments that compared SDT and the 2HTM using binary (yes-no) ROCs and found that many of these functions were linear, supporting 2HTM over SDT. We examine all the data reported by Bröder and Schütz, noting important limitations in their methodology, analyses, and conclusions. We report a new meta-analysis and 2 new experiments to examine the issue more closely while avoiding the limitations of Bröder and Schütz's study. These new data indicate that binary ROCs are curved in recognition, consistent with previous findings in perception and reasoning. Our results support classic arguments in favor of SDT and indicate that curvature in ratings ROCs is not task specific. We recommend the ratings procedure and suggest that analyses based on threshold models be treated with caution.

摘要

在再认记忆中,一个经典的发现是接收者操作特征(ROC)是曲线的。这一发现支持了信号检测理论(SDT)的基本假设,而离散状态模型,如双高阈值模型(2HTM),则预测线性 ROC。然而,最近 Bröder 和 Schütz(2009)质疑了这一观点,他们指出,支持 SDT 的大多数数据都涉及置信度评分。作者认为,某些类型的评分量表的使用可能会导致曲线 ROC,即使生成过程本质上是有阈值的。从这个角度来看,只有通过实验偏差操纵构建的 ROC 才有助于区分模型。Bröder 和 Schütz 进行了一项元分析和新的实验,使用二进制(是/否)ROC 比较了 SDT 和 2HTM,发现这些函数中的许多都是线性的,支持 2HTM 而不是 SDT。我们检查了 Bröder 和 Schütz 报告的所有数据,注意到他们的方法、分析和结论存在重要的局限性。我们报告了一项新的元分析和两项新的实验,以更密切地研究这个问题,同时避免 Bröder 和 Schütz 研究的局限性。这些新数据表明,在识别中,二进制 ROC 是弯曲的,这与感知和推理中的先前发现一致。我们的结果支持支持 SDT 的经典论点,并表明评分 ROC 的曲率不是特定于任务的。我们建议使用评分程序,并建议对基于阈值模型的分析要谨慎处理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验