Suppr超能文献

数字微流控平台用于多重酶联免疫分析:在新生儿溶酶体贮积病筛查中的应用。

Digital microfluidic platform for multiplexing enzyme assays: implications for lysosomal storage disease screening in newborns.

机构信息

Advanced Liquid Logic, Research Triangle Park, NC, USA.

出版信息

Clin Chem. 2011 Oct;57(10):1444-51. doi: 10.1373/clinchem.2011.163139. Epub 2011 Aug 22.

Abstract

BACKGROUND

Newborn screening for lysosomal storage diseases (LSDs) has been gaining considerable interest owing to the availability of enzyme replacement therapies. We present a digital microfluidic platform to perform rapid, multiplexed enzymatic analysis of acid α-glucosidase (GAA) and acid α-galactosidase to screen for Pompe and Fabry disorders. The results were compared with those obtained using standard fluorometric methods.

METHODS

We performed bench-based, fluorometric enzymatic analysis on 60 deidentified newborn dried blood spots (DBSs), plus 10 Pompe-affected and 11 Fabry-affected samples, at Duke Biochemical Genetics Laboratory using a 3-mm punch for each assay and an incubation time of 20 h. We used a digital microfluidic platform to automate fluorometric enzymatic assays at Advanced Liquid Logic Inc. using extract from a single punch for both assays, with an incubation time of 6 h. Assays were also performed with an incubation time of 1 h.

RESULTS

Assay results were generally comparable, although mean enzymatic activity for GAA using microfluidics was approximately 3 times higher than that obtained using bench-based methods, which could be attributed to higher substrate concentration. Clear separation was observed between the normal and affected samples at both 6- and 1-h incubation times using digital microfluidics.

CONCLUSIONS

A digital microfluidic platform compared favorably with a clinical reference laboratory to perform enzymatic analysis in DBSs for Pompe and Fabry disorders. This platform presents a new technology for a newborn screening laboratory to screen LSDs by fully automating all the liquid-handling operations in an inexpensive system, providing rapid results.

摘要

背景

由于酶替代疗法的出现,新生儿溶酶体贮积症(LSD)的筛查引起了相当大的关注。我们提出了一种数字微流控平台,用于快速、多重酶分析酸性α-葡萄糖苷酶(GAA)和酸性α-半乳糖苷酶,以筛查庞贝病和法布里病。结果与使用标准荧光法获得的结果进行了比较。

方法

我们在杜克生化遗传学实验室使用 3 毫米打孔器对 60 份未经识别的新生儿干血斑(DBS)以及 10 份庞贝病和 11 份法布里病样本进行了基于工作台的荧光酶分析,每种测定的孵育时间为 20 小时。我们使用数字微流控平台在 Advanced Liquid Logic Inc. 自动进行荧光酶分析,对于两种测定,使用单个打孔器提取的提取物,孵育时间为 6 小时。还进行了孵育时间为 1 小时的测定。

结果

测定结果通常是可比的,尽管使用微流控的 GAA 酶活性平均值大约是使用基于工作台的方法获得的酶活性平均值的 3 倍,这可能归因于较高的底物浓度。使用数字微流控在 6 小时和 1 小时孵育时间,在正常和受影响的样本之间观察到明显的分离。

结论

与临床参考实验室相比,数字微流控平台在 DBS 中进行庞贝病和法布里病的酶分析表现良好。该平台为新生儿筛查实验室提供了一种新技术,通过在廉价系统中完全自动化所有的液体处理操作,快速提供结果,从而筛选 LSD。

相似文献

引用本文的文献

1
Open and closed microfluidics for biosensing.用于生物传感的开放式和封闭式微流体技术。
Mater Today Bio. 2024 Apr 4;26:101048. doi: 10.1016/j.mtbio.2024.101048. eCollection 2024 Jun.
3
How mass spectrometry revolutionized newborn screening.质谱技术如何彻底改变新生儿筛查。
J Mass Spectrom Adv Clin Lab. 2024 Jan 30;32:1-10. doi: 10.1016/j.jmsacl.2024.01.006. eCollection 2024 Apr.

本文引用的文献

1
Newborn bloodspot screening for lysosomal storage disorders.新生儿溶酶体贮积症血斑筛查。
J Pediatr. 2011 Jul;159(1):7-13.e1. doi: 10.1016/j.jpeds.2011.02.026. Epub 2011 Apr 13.
4
Newborn screening for neuropathic lysosomal storage disorders.新生儿神经病变溶酶体贮积症筛查。
J Inherit Metab Dis. 2010 Aug;33(4):381-6. doi: 10.1007/s10545-010-9130-6. Epub 2010 Jun 8.
5
Newborn screening of lysosomal storage disorders.新生儿溶酶体贮积症筛查。
Clin Chem. 2010 Jul;56(7):1071-9. doi: 10.1373/clinchem.2009.141622. Epub 2010 May 20.
10
Newborn screening for Krabbe disease: the New York State model.克拉贝病的新生儿筛查:纽约州模式。
Pediatr Neurol. 2009 Apr;40(4):245-52; discussion 253-5. doi: 10.1016/j.pediatrneurol.2008.11.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验