Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
J Chem Phys. 2011 Aug 21;135(7):074106. doi: 10.1063/1.3624766.
The use of ring polymer molecular dynamics (RPMD) for the direct simulation of electron transfer (ET) reaction dynamics is analyzed in the context of Marcus theory, semiclassical instanton theory, and exact quantum dynamics approaches. For both fully atomistic and system-bath representations of condensed-phase ET, we demonstrate that RPMD accurately predicts both ET reaction rates and mechanisms throughout the normal and activationless regimes of the thermodynamic driving force. Analysis of the ensemble of reactive RPMD trajectories reveals the solvent reorganization mechanism for ET that is anticipated in the Marcus rate theory, and the accuracy of the RPMD rate calculation is understood in terms of its exact description of statistical fluctuations and its formal connection to semiclassical instanton theory for deep-tunneling processes. In the inverted regime of the thermodynamic driving force, neither RPMD nor a related formulation of semiclassical instanton theory capture the characteristic turnover in the reaction rate; comparison with exact quantum dynamics simulations reveals that these methods provide inadequate quantization of the real-time electronic-state dynamics in the inverted regime.
本文在 Marcus 理论、半经典瞬时理论和精确量子动力学方法的背景下,分析了环聚合物分子动力学(RPMD)在直接模拟电子转移(ET)反应动力学中的应用。对于完全原子和凝聚相 ET 的系统-浴表示,我们证明 RPMD 在热力学驱动力的正常和非活化区准确地预测了 ET 反应速率和机制。对反应 RPMD 轨迹的集合分析揭示了 ET 的溶剂重排机制,这与 Marcus 速率理论预期的一致,并且 RPMD 速率计算的准确性可以通过其对统计涨落的精确描述及其与深隧过程的半经典瞬时理论的形式联系来理解。在热力学驱动力的倒置区,RPMD 和相关的半经典瞬时理论的表述都无法捕捉到反应速率的特征转折点;与精确量子动力学模拟的比较表明,这些方法在倒置区提供了实时电子态动力学的不充分量子化。