Department of Physics, Kent State University, Kent, OH 44242, USA.
J Chem Phys. 2011 Aug 21;135(7):075104. doi: 10.1063/1.3625636.
Conformational flexibility plays a central role in allosteric transition of proteins. In this paper, we extend the analysis of our previous study [S. Tripathi and J. J. Portman, Proc. Natl. Acad. Sci. U.S.A. 106, 2104 (2009)] to investigate how relatively minor structural changes of the meta-stable states can significantly influence the conformational flexibility and allosteric transition mechanism. We use the allosteric transitions of the domains of calmodulin as an example system to highlight the relationship between the transition mechanism and the inter-residue contacts present in the meta-stable states. In particular, we focus on the origin of transient local unfolding (cracking), a mechanism that can lower free energy barriers of allosteric transitions, in terms of the inter-residue contacts of the meta-stable states and the pattern of local strain that develops during the transition. We find that the magnitude of the local strain in the protein is not the sole factor determining whether a region will ultimately crack during the transition. These results emphasize that the residue interactions found exclusively in one of the two meta-stable states is the key in understanding the mechanism of allosteric conformational change.
构象灵活性在蛋白质的变构转变中起着核心作用。在本文中,我们扩展了我们之前研究的分析[S. Tripathi 和 J. J. Portman, Proc. Natl. Acad. Sci. U.S.A. 106, 2104 (2009)],以研究亚稳态的相对较小的结构变化如何显著影响构象灵活性和变构转变机制。我们使用钙调蛋白结构域的变构转变作为示例系统,强调转变机制与亚稳态中存在的残基间相互作用之间的关系。特别是,我们关注瞬时局部展开(开裂)的起源,这是一种可以降低变构转变自由能垒的机制,从亚稳态的残基间相互作用和转变过程中产生的局部应变模式的角度来看待这个问题。我们发现,蛋白质中局部应变的大小不是决定该区域在转变过程中最终是否会开裂的唯一因素。这些结果强调了仅在两个亚稳态之一中发现的残基相互作用是理解变构构象变化机制的关键。