Suppr超能文献

共生菌通过肠道上皮细胞对宿主基因的表观遗传控制。

Epigenetic control of the host gene by commensal bacteria in large intestinal epithelial cells.

机构信息

Food and Physiological Functions Laboratory, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan.

Food and Physiological Functions Laboratory, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan.

出版信息

J Biol Chem. 2011 Oct 14;286(41):35755-35762. doi: 10.1074/jbc.M111.271007. Epub 2011 Aug 23.

Abstract

Intestinal epithelial cells (IECs) are continuously exposed to large numbers of commensal bacteria but are relatively insensitive to them, thereby averting an excessive inflammatory reaction. We have previously reported that the hyporesponsiveness of a human IEC line to LPS was primarily the result of a down-regulation of TLR4 gene transcription through epigenetic mechanisms. In the present study we show that DNA methylation in the 5' region of the TLR4 gene is significantly higher in IECs than in splenic cells in vivo. The methylation was shown to be dependent on the differentiation state of the IECs, as the differentiated IEC population that expressed higher levels of intestinal alkaline phosphatase (IAP) also displayed greater methylation and lower expression of the TLR4 gene than the undifferentiated population. The IAP(high), differentiated population also showed less abundant expression of CDX2, the transcription factor required for the development of the intestine, than the IAP(low), undifferentiated population. Overexpression of CDX2 in an IEC line decreased the methylation level of the TLR4 gene, increased transcriptional promoter activity of the gene, and increased responsiveness to the TLR4 ligand. Furthermore, the methylation level of the TLR4 gene was significantly lower in IECs of the large intestine of germ-free mice than in those of conventional mice, whereas the level in IECs of the small intestine was almost equal between these mice, indicating that commensal bacteria contribute to the maintenance of intestinal symbiosis by controlling epigenetic modification of the host gene in the large intestine.

摘要

肠上皮细胞(IECs)持续暴露于大量共生细菌,但对其相对不敏感,从而避免了过度的炎症反应。我们之前曾报道过,人 IEC 系对 LPS 的低反应性主要是由于 TLR4 基因转录的下调通过表观遗传机制。在本研究中,我们表明 TLR4 基因 5'区域的 DNA 甲基化在体内 IEC 中明显高于脾细胞。这种甲基化依赖于 IEC 的分化状态,因为表达更高水平的肠碱性磷酸酶(IAP)的分化 IEC 群体也显示出比未分化群体更高的甲基化和 TLR4 基因的低表达。IAP(高)、分化群体也显示出比 IAP(low)、未分化群体更少的 CDX2 表达,CDX2 是肠道发育所必需的转录因子。在 IEC 系中过表达 CDX2 可降低 TLR4 基因的甲基化水平,增加基因转录启动子活性,并增加对 TLR4 配体的反应性。此外,无菌小鼠大肠上皮细胞中 TLR4 基因的甲基化水平明显低于常规小鼠,而小肠上皮细胞中 TLR4 基因的甲基化水平在这些小鼠之间几乎相等,表明共生细菌通过控制大肠中宿主基因的表观遗传修饰来维持肠道共生。

相似文献

1
Epigenetic control of the host gene by commensal bacteria in large intestinal epithelial cells.
J Biol Chem. 2011 Oct 14;286(41):35755-35762. doi: 10.1074/jbc.M111.271007. Epub 2011 Aug 23.
2
Epigenetic regulation of TLR4 gene expression in intestinal epithelial cells for the maintenance of intestinal homeostasis.
J Immunol. 2009 Nov 15;183(10):6522-9. doi: 10.4049/jimmunol.0901271. Epub 2009 Oct 21.
3
Regulation of Toll-like receptor 4-associated MD-2 in intestinal epithelial cells: a comprehensive analysis.
Innate Immun. 2010 Apr;16(2):93-103. doi: 10.1177/1753425909339231. Epub 2009 Aug 26.
4
Commensal microbiota-induced microRNA modulates intestinal epithelial permeability through the small GTPase ARF4.
J Biol Chem. 2017 Sep 15;292(37):15426-15433. doi: 10.1074/jbc.M117.788596. Epub 2017 Jul 31.
5
Regulation of Gene Expression through Gut Microbiota-Dependent DNA Methylation in Colonic Epithelial Cells.
Immunohorizons. 2020 Apr 15;4(4):178-190. doi: 10.4049/immunohorizons.1900086.
6
10
Epigenetic modification of TLE1 induce abnormal differentiation in diabetic mice intestinal epithelium.
Mol Cell Biochem. 2018 Jan;438(1-2):85-96. doi: 10.1007/s11010-017-3116-8. Epub 2017 Jul 25.

引用本文的文献

1
Epigenetic modifications of gut microbiota and their potential role in atherosclerosis.
Front Pharmacol. 2025 Jul 16;16:1638240. doi: 10.3389/fphar.2025.1638240. eCollection 2025.
2
Deciphering the impact of intra-tumoral bacterial infiltration on multi-omics profiles in low-grade gliomas.
Front Oncol. 2025 Jun 18;15:1582068. doi: 10.3389/fonc.2025.1582068. eCollection 2025.
3
Clinical effectiveness of fecal microbial transplantation for metabolic syndrome: Advances in clinical efficacy and multi-omics research.
Curr Res Microb Sci. 2025 Jun 5;9:100415. doi: 10.1016/j.crmicr.2025.100415. eCollection 2025.
5
The role of short-chain fatty acid in metabolic syndrome and its complications: focusing on immunity and inflammation.
Front Immunol. 2025 Feb 7;16:1519925. doi: 10.3389/fimmu.2025.1519925. eCollection 2025.
6
Dual Regulation Mechanism of Obesity: DNA Methylation and Intestinal Flora.
Biomedicines. 2024 Jul 23;12(8):1633. doi: 10.3390/biomedicines12081633.
7
Global research progress of gut microbiota and epigenetics: bibliometrics and visualized analysis.
Front Immunol. 2024 May 13;15:1412640. doi: 10.3389/fimmu.2024.1412640. eCollection 2024.
8
DNA methylation in necrotizing enterocolitis.
Expert Rev Mol Med. 2024 Apr 1;26:e16. doi: 10.1017/erm.2024.16.
9
Modulation of Caco-2 Colon Cancer Cell Viability and CYP2W1 Gene Expression by Hesperidin-treated GG (LGG) Cell-free Supernatants.
Anticancer Agents Med Chem. 2024;24(5):372-378. doi: 10.2174/0118715206271514231124111026.
10
Know your neighbors: microbial recognition at the intestinal barrier and its implications for gut homeostasis and inflammatory bowel disease.
Front Cell Dev Biol. 2023 Jul 14;11:1228283. doi: 10.3389/fcell.2023.1228283. eCollection 2023.

本文引用的文献

1
Influence of gastrointestinal commensal bacteria on the immune responses that mediate allergy and asthma.
J Allergy Clin Immunol. 2011 May;127(5):1097-107; quiz 1108-9. doi: 10.1016/j.jaci.2011.02.012. Epub 2011 Mar 21.
2
Gut microbiota, probiotics, and vitamin D: interrelated exposures influencing allergy, asthma, and obesity?
J Allergy Clin Immunol. 2011 May;127(5):1087-94; quiz 1095-6. doi: 10.1016/j.jaci.2011.02.015. Epub 2011 Mar 21.
3
Chronic high-fat diet drives postnatal epigenetic regulation of μ-opioid receptor in the brain.
Neuropsychopharmacology. 2011 May;36(6):1199-206. doi: 10.1038/npp.2011.4. Epub 2011 Feb 16.
5
Induction of epigenetic alterations by dietary and other environmental factors.
Adv Genet. 2010;71:3-39. doi: 10.1016/B978-0-12-380864-6.00001-8.
6
Gene-specific epigenetic regulation in serious infections with systemic inflammation.
J Innate Immun. 2010;2(5):395-405. doi: 10.1159/000314077. Epub 2010 Apr 27.
7
Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells.
Immunity. 2010 Jun 25;32(6):815-27. doi: 10.1016/j.immuni.2010.06.001.
9
Epigenetic regulation of TLR4 gene expression in intestinal epithelial cells for the maintenance of intestinal homeostasis.
J Immunol. 2009 Nov 15;183(10):6522-9. doi: 10.4049/jimmunol.0901271. Epub 2009 Oct 21.
10
Regulation of Toll-like receptor 4-associated MD-2 in intestinal epithelial cells: a comprehensive analysis.
Innate Immun. 2010 Apr;16(2):93-103. doi: 10.1177/1753425909339231. Epub 2009 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验