Department of Biological Sciences, Allergan, Inc., Irvine, California 92612, USA.
Invest Ophthalmol Vis Sci. 2011 Sep 29;52(10):7654-63. doi: 10.1167/iovs.10-6609.
Patients with diabetic retinopathy may experience severe vision loss due to macular edema and neovascularization secondary to vascular abnormalities. However, before these abnormalities become apparent, there are functional deficits in contrast sensitivity, color perception, and dark adaptation. The goals of this study are to evaluate early changes (up to 3 months) in retinal gene expression, selected visual cycle proteins, and optokinetic tracking (OKT) in streptozotocin (STZ)-induced diabetic rats.
Retinal gene expression in diabetic Long Evans rats was measured by whole genome microarray 7 days, 4 weeks, and 3 months after the onset of hyperglycemia. Select gene and protein changes were probed by polymerase chain reaction (PCR) and immunohistochemistry, respectively, and OKT thresholds were measured using a virtual optokinetics system.
Microarray analysis showed that the most consistently affected molecular and cellular functions were cell-to-cell signaling and interaction, cell death, cellular growth and proliferation, molecular transport, and cellular movement. Further analysis revealed reduced expression of several genes encoding visual cycle proteins including lecithin/retinol acyltransferase (LRAT), retinal pigment epithelium (RPE)-specific protein 65 kDa (RPE65), and RPE retinal G protein-coupled receptor (RGR). These molecular changes occurred simultaneously with a decrease in OKT thresholds by 4 weeks of diabetes. Immunohistochemistry revealed a decrease in RPE65 in the RPE layer of diabetic rats after 3 months of hyperglycemia.
The data presented here are further evidence that inner retinal cells are affected by hyperglycemia simultaneously with blood retinal barrier breakdown, suggesting that glial and neuronal dysfunction may underlie some of the early visual deficits in persons with diabetes.
糖尿病视网膜病变患者可能会因黄斑水肿和新生血管形成而导致严重的视力丧失,这是由于血管异常引起的。然而,在这些异常表现出来之前,对比敏感度、颜色感知和暗适应就已经存在功能缺陷。本研究的目的是评估链脲佐菌素(STZ)诱导的糖尿病大鼠视网膜基因表达、选定的视觉循环蛋白和视动跟踪(OKT)的早期变化(最长可达 3 个月)。
通过全基因组微阵列分析,在高血糖发生后 7 天、4 周和 3 个月,测量糖尿病 Long Evans 大鼠的视网膜基因表达。通过聚合酶链反应(PCR)和免疫组织化学分别探测选定的基因和蛋白变化,并使用虚拟视动跟踪系统测量 OKT 阈值。
微阵列分析显示,受影响最一致的分子和细胞功能是细胞间信号转导和相互作用、细胞死亡、细胞生长和增殖、分子转运和细胞运动。进一步分析显示,编码视觉循环蛋白的几个基因的表达减少,包括卵磷脂/视黄醇酰基转移酶(LRAT)、视网膜色素上皮(RPE)特异性蛋白 65kDa(RPE65)和 RPE 视网膜 G 蛋白偶联受体(RGR)。这些分子变化与糖尿病 4 周时 OKT 阈值下降同时发生。免疫组织化学显示,高血糖 3 个月后,糖尿病大鼠的 RPE 层中 RPE65 减少。
本文提供的资料进一步证明,内视网膜细胞在血视网膜屏障破坏的同时受到高血糖的影响,这表明胶质和神经元功能障碍可能是糖尿病患者早期一些视觉缺陷的基础。