David Lior, Clauder-Münster Sandra, Steinmetz Lars M
Department of Animal Sciences, R.H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
Methods Mol Biol. 2011;759:107-23. doi: 10.1007/978-1-61779-173-4_7.
In the last decade, it became clear that transcription goes far beyond that of protein-coding genes. Most RNA molecules are transcribed from intergenic regions or introns and exhibit much variability in size, expression level, secondary structure, and evolutionary conservation. While for several types of non-coding RNAs some cellular functions have been reported, like for micro-RNAs and small nucleolar RNAs, for most others no indications of function or regulation have so far been found. Therefore, the RNA population inside a cell is diverse and cryptic and, thus, demands powerful methods to study its composition, abundance, and structure. DNA oligonucleotide microarrays have proven to be of great utility to study transcription of genes in various organisms. Recently, due to advancement in microarray technology, tiling microarrays that extend transcription measurement to genomic regions beyond protein-coding genes were designed for several species. The Saccharomyces cerevisiae yeast tiling array contains overlapping probes across the full genomic sequence, with consecutive probes starting every 8 bp on average on each strand, enabling strand-specific measurement of transcription from a full eukaryotic genome. Here, we describe the methods used to extract yeast RNA, convert it into first-strand cDNA, fragment, and label it for hybridization to the tiling array. This protocol will enable researchers not only to study which genes are expressed and to what levels, but also to identify non-coding RNAs and to study the structure of transcripts including their untranslated regions, alternative start, stop, and processing sites. This information will allow understanding their roles inside cells.
在过去十年中,人们清楚地认识到转录远远超出了蛋白质编码基因的范畴。大多数RNA分子是从基因间区域或内含子转录而来,在大小、表达水平、二级结构和进化保守性方面表现出很大的变异性。虽然已经报道了几种类型的非编码RNA的一些细胞功能,如微小RNA和小核仁RNA,但对于大多数其他非编码RNA,迄今为止尚未发现功能或调控的迹象。因此,细胞内的RNA群体是多样且神秘的,因此需要强大的方法来研究其组成、丰度和结构。DNA寡核苷酸微阵列已被证明在研究各种生物体中的基因转录方面非常有用。最近,由于微阵列技术的进步,为几个物种设计了将转录测量扩展到蛋白质编码基因以外的基因组区域的平铺微阵列。酿酒酵母平铺阵列包含跨越整个基因组序列的重叠探针,每条链上平均每8个碱基对就有连续的探针起始,从而能够对整个真核基因组的转录进行链特异性测量。在这里,我们描述了用于提取酵母RNA、将其转化为第一链cDNA、片段化并标记以与平铺阵列杂交的方法。该方案不仅将使研究人员能够研究哪些基因被表达以及表达水平如何,还能够鉴定非编码RNA并研究转录本的结构,包括其非翻译区域、可变起始、终止和加工位点。这些信息将有助于了解它们在细胞内的作用。