Institute of Physics, University of Augsburg, Augsburg, Germany.
J Phys Chem A. 2011 Nov 17;115(45):13061-71. doi: 10.1021/jp2050405. Epub 2011 Aug 24.
Analysis of accurate experimental and theoretical structure factors of diamond and silicon reveals that the contraction of the core shell due to covalent bond formation causes significant perturbations of the total charge density that cannot be ignored in precise charge density studies. We outline that the nature and origin of core contraction/expansion and core polarization phenomena can be analyzed by experimental studies employing an extended Hansen-Coppens multipolar model. Omission or insufficient treatment of these subatomic charge density phenomena might yield erroneous thermal displacement parameters and high residual densities in multipolar refinements. Our detailed studies therefore suggest that the refinement of contraction/expansion and population parameters of all atomic shells is essential to the precise reconstruction of electron density distributions by a multipolar model. Furthermore, our results imply that also the polarization of the inner shells needs to be adopted, especially in cases where second row or even heavier elements are involved in covalent bonding. These theoretical studies are supported by direct multipolar refinements of X-ray powder diffraction data of diamond obtained from a third-generation synchrotron-radiation source (SPring-8, BL02B2).
分析金刚石和硅的精确实验和理论结构因子表明,由于共价键的形成,核壳的收缩会导致总电荷密度的显著扰动,在精确的电荷密度研究中不能忽略。我们概述了通过实验研究采用扩展的 Hansen-Coppens 多极模型,可以分析核收缩/膨胀和核极化现象的性质和起源。忽略或处理不当这些亚原子电荷密度现象可能会导致在多极精修中产生错误的热位移参数和高残余密度。因此,我们的详细研究表明,对于通过多极模型精确重建电子密度分布,所有原子壳层的收缩/膨胀和电子数参数的精修是必不可少的。此外,我们的结果还表明,需要采用内壳层的极化,特别是在涉及共价键的第二行甚至更重的元素的情况下。这些理论研究得到了来自第三代同步辐射源(SPring-8,BL02B2)的金刚石 X 射线粉末衍射数据的直接多极精修的支持。