Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States.
Biochemistry. 2011 Oct 25;50(42):9088-113. doi: 10.1021/bi201077h. Epub 2011 Oct 3.
Recognition of nucleic acids is important for our understanding of nucleic acid structure as well as for our understanding of nucleic acid-protein interactions. In addition to the direct readout mechanisms of nucleic acids such as H-bonding, shape recognition of nucleic acids is being increasingly recognized as playing an equally important role in DNA recognition. Competition dialysis, UV, flourescent intercalator displacement (FID), computational docking, and calorimetry studies were conducted to study the interaction of neomycin with a variety of nucleic acid conformations (shapes). At pH 5.5, the results suggest the following. (1) Neomycin binds three RNA structures [16S A site rRNA, poly(rA)·poly(rA), and poly(rA)·poly(rU)] with high affinities (K(a) ~ 10(7) M(-1)). (2) The binding of neomycin to A-form GC-rich oligomer d(A(2)G(15)C(15)T(2))(2) has an affinity comparable to those of RNA structures. (3) The binding of neomycin to DNA·RNA hybrids shows a 3-fold variance that can be attributed to their structural differences [for poly(dA)·poly(rU), K(a) = 9.4 × 10(6) M(-1), and for poly(rA)·poly(dT), K(a) = 3.1 × 10(6) M(-1)]. (4) The interaction of neomycin with DNA triplex poly(dA)·2poly(dT) yields a binding affinity (K(a)) of 2.4 × 10(5) M(-1). (5) Poly(dA-dT)(2) shows the lowest association constant for all nucleic acids studied (K(a) < 10(5)). (6) Neomycin binds to G-quadruplexes with K(a) values of ~10(4)-10(5) M(-1). (7) Computational studies show that the decrease in major groove width in the B to A transition correlates with increasing neomycin affinity. Neomycin's affinity for various nucleic acid structures can be ranked as follows: RNAs and GC-rich d(A(2)G(15)C(15)T(2))(2) structures > poly(dA)·poly(rU) > poly(rA)·poly(dT) > T·A-T triplex, G-quadruplex, B-form AT-rich, or GC-rich DNA sequences. The results illustrate the first example of a small molecule-based "shape readout" of different nucleic acid conformations.
核酸的识别对于我们理解核酸结构以及核酸-蛋白质相互作用至关重要。除了核酸的氢键等直接读出机制外,核酸的形状识别也被越来越多地认为在 DNA 识别中起着同样重要的作用。我们进行了竞争透析、紫外光、荧光嵌入剂置换(FID)、计算对接和量热法研究,以研究新霉素与各种核酸构象(形状)的相互作用。在 pH 值为 5.5 时,结果表明:(1)新霉素与三种 RNA 结构[16S A 位 rRNA、多聚(rA)·多聚(rA)和多聚(rA)·多聚(rU)]具有高亲和力(K(a)~10(7)M(-1))。(2)新霉素与 A 型富含 GC 的寡聚物 d(A(2)G(15)C(15)T(2))(2)的结合具有与 RNA 结构相当的亲和力。(3)新霉素与 DNA·RNA 杂种的结合显示出 3 倍的差异,这可以归因于它们的结构差异[对于多聚(dA)·多聚(rU),K(a)=9.4×10(6)M(-1),而对于多聚(rA)·多聚(dT),K(a)=3.1×10(6)M(-1))。(4)新霉素与多聚(dA)·2 多聚(dT)的 DNA 三聚体相互作用产生 2.4×10(5)M(-1)的结合亲和力(K(a))。(5)所有研究的核酸中,多聚(dA-dT)(2)的结合常数最低(K(a)<10(5))。(6)新霉素与 G-四链体的 K(a) 值约为 10(4)-10(5)M(-1)。(7)计算研究表明,B 型向 A 型转变时主沟宽度的减小与新霉素亲和力的增加相关。新霉素对各种核酸结构的亲和力可以按以下顺序排列:RNA 和富含 GC 的 d(A(2)G(15)C(15)T(2))(2)结构>多聚(dA)·多聚(rU)>多聚(rA)·多聚(dT)>T·A-T 三聚体、G-四链体、B 型富含 AT 或富含 GC 的 DNA 序列。这些结果说明了小分子对不同核酸构象的“形状读出”的第一个例子。