Suppr超能文献

甘露糖结合凝集素相关丝氨酸蛋白酶-3 在替代补体途径激活中的作用。

The role of mannose-binding lectin-associated serine protease-3 in activation of the alternative complement pathway.

机构信息

Department of Immunology, Fukushima Medical University, Fukushima 960-1295, Japan.

出版信息

J Immunol. 2011 Oct 1;187(7):3751-8. doi: 10.4049/jimmunol.1100280. Epub 2011 Aug 24.

Abstract

Mannose-binding lectin (MBL)-associated serine proteases (MASPs) are responsible for activation of the lectin complement pathway. Three types of MASPs (MASP-1, MASP-2, and MASP-3) are complexed with MBL and ficolins in serum. Although MASP-1 and MASP-2 are known to contribute to complement activation, the function of MASP-3 remains unclear. In this study, we investigated the mechanism of MASP-3 activation and its substrate using the recombinant mouse MASP-3 (rMASP-3) and several different types of MASP-deficient mice. A proenzyme rMASP-3 was obtained that was not autoactivated during preparation. The recombinant enzyme was activated by incubation with Staphylococcus aureus in the presence of MBL-A, but not MBL-C. In vivo studies revealed the phagocytic activities of MASP-1/3-deficient mice and all MASPs (MASP-1/2/3)-deficient mice against S. aureus and bacterial clearance in these mice were lower than those in wild-type and MASP-2-deficient mice. Sera from all MASPs-deficient mice showed significantly lower C3 deposition activity on the bacteria compared with that of wild-type serum, and addition of rMASP-3 to the deficient serum restored C3 deposition. The low C3 deposition in sera from all MASPs-deficient mice was probably caused by the low level factor B activation that was ameliorated by the addition of rMASP-3. Furthermore, rMASP-3 directly activated factors B and D in vitro. These results suggested that MASP-3 complexed with MBL is converted to an active form by incubation with bacterial targets, and that activated MASP-3 triggered the initial activation step of the alternative complement pathway.

摘要

甘露聚糖结合凝集素相关丝氨酸蛋白酶(MASPs)负责激活凝集素补体途径。三种类型的 MASPs(MASP-1、MASP-2 和 MASP-3)与 MBL 和纤维胶凝蛋白在血清中形成复合物。虽然 MASP-1 和 MASP-2 已知有助于补体激活,但 MASP-3 的功能仍不清楚。在这项研究中,我们使用重组小鼠 MASP-3(rMASP-3)和几种不同类型的 MASPs 缺陷小鼠研究了 MASP-3 激活及其底物的机制。获得了一种前酶 rMASP-3,在制备过程中不会自动激活。重组酶在 MBL-A 存在下与金黄色葡萄球菌孵育而被激活,但不被 MBL-C 激活。体内研究揭示了 MASP-1/3 缺陷小鼠和所有 MASPs(MASP-1/2/3)缺陷小鼠对金黄色葡萄球菌的吞噬活性,并且这些小鼠中的细菌清除率低于野生型和 MASP-2 缺陷小鼠。与野生型血清相比,所有 MASPs 缺陷小鼠的血清中 C3 沉积活性显著降低,并且向缺陷血清中添加 rMASP-3 可恢复 C3 沉积。所有 MASPs 缺陷小鼠血清中 C3 沉积水平较低可能是由于因子 B 激活水平较低所致,而添加 rMASP-3 可改善这种情况。此外,rMASP-3 可直接在体外激活因子 B 和 D。这些结果表明,与细菌靶标孵育时,与 MBL 结合的 MASP-3 转化为活性形式,并且激活的 MASP-3 触发替代补体途径的初始激活步骤。

相似文献

1
The role of mannose-binding lectin-associated serine protease-3 in activation of the alternative complement pathway.
J Immunol. 2011 Oct 1;187(7):3751-8. doi: 10.4049/jimmunol.1100280. Epub 2011 Aug 24.
2
Production and purification of recombinants of mouse MASP-2 and sMAP.
J Endotoxin Res. 2005;11(1):47-50. doi: 10.1179/096805105225006704.
3
Activation of the alternative complement pathway by mannose-binding lectin via a C2-bypass pathway.
Microbiol Immunol. 2011 Nov;55(11):817-21. doi: 10.1111/j.1348-0421.2011.00378.x.
4
Cooperation between MASP-1 and MASP-2 in the generation of C3 convertase through the MBL pathway.
Int Immunol. 2007 Feb;19(2):141-9. doi: 10.1093/intimm/dxl131. Epub 2006 Dec 20.
5
MASP interactions with plasma-derived MBL.
Mol Immunol. 2012 Sep;52(2):79-87. doi: 10.1016/j.molimm.2012.04.014. Epub 2012 May 18.
6
Serum MASP-1 in complex with MBL activates endothelial cells.
Mol Immunol. 2014 May;59(1):39-45. doi: 10.1016/j.molimm.2014.01.001. Epub 2014 Jan 26.
9
Small mannose-binding lectin-associated protein plays a regulatory role in the lectin complement pathway.
J Immunol. 2006 Dec 15;177(12):8626-32. doi: 10.4049/jimmunol.177.12.8626.

引用本文的文献

2
Quantification of the zymogenicity and the substrate-induced activity enhancement of complement factor D.
Front Immunol. 2023 May 22;14:1197023. doi: 10.3389/fimmu.2023.1197023. eCollection 2023.
4
Proprotein Convertases and the Complement System.
Front Immunol. 2022 Jul 6;13:958121. doi: 10.3389/fimmu.2022.958121. eCollection 2022.
6
COVID-19, Pre-Eclampsia, and Complement System.
Front Immunol. 2021 Nov 17;12:775168. doi: 10.3389/fimmu.2021.775168. eCollection 2021.
7
Therapeutic Targeting of the Complement System: From Rare Diseases to Pandemics.
Pharmacol Rev. 2021 Apr;73(2):792-827. doi: 10.1124/pharmrev.120.000072.
8
Genomic Insights Into the Lifestyles of Thaumarchaeota Inside Sponges.
Front Microbiol. 2021 Jan 11;11:622824. doi: 10.3389/fmicb.2020.622824. eCollection 2020.
9
Immunological Basis of the Endometriosis: The Complement System as a Potential Therapeutic Target.
Front Immunol. 2021 Jan 11;11:599117. doi: 10.3389/fimmu.2020.599117. eCollection 2020.
10
Rationale for targeting complement in COVID-19.
EMBO Mol Med. 2020 Aug 7;12(8):e12642. doi: 10.15252/emmm.202012642. Epub 2020 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验