Suppr超能文献

通过原子隧穿解释星际甲醇的氘富集。

Deuterium enrichment of interstellar methanol explained by atom tunneling.

机构信息

Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.

出版信息

J Phys Chem A. 2011 Oct 6;115(39):10767-74. doi: 10.1021/jp206048f. Epub 2011 Sep 12.

Abstract

We calculate, down to low temperature and for different isotopes, the reaction rate constants for the hydrogen abstraction reaction H + H(3)COH → H(2) + CH(2)OH/CH(3)O. These explain the known abundances of deuterated forms of methanol in interstellar clouds, where CH(2)DOH can be almost as abundant as CH(3)OH. For abstraction from both the C- and the O-end of methanol, the barrier-crossing motion involves the movement of light hydrogen atoms. Consequently, tunneling plays a dominant role already at relatively high temperature. Our implementation of harmonic quantum transition state theory with on the fly calculation of forces and energies accounts for these tunneling effects. The results are in good agreement with previous semiclassical and quantum dynamics calculations (down to 200 K) and experimental studies (down to 295 K). Here we extend the rate calculations down to lower temperature: 30 K for abstraction from the C-end of methanol and 80 K for abstraction from the OH-group. At all temperatures, abstraction from the C-end is preferred over abstraction from the O-end, more strongly so at lower temperature. Furthermore, the tunneling behavior strongly affects the kinetic isotope effects (KIEs). D + H(3)COH → HD + CH(2)OH has a lower vibrationally adiabatic barrier than H + H(3)COH → H(2) + CH(2)OH, giving rise to an inverse KIE (k(H)/k(D) < 1) at high temperature, in accordance with previous experiments and calculations. However, since tunneling is more facile for the light H atom, abstraction by H is favored over abstraction by D below ~135 K, with a KIE k(H)/k(D) of 11.2 at 30 K. The H + D(3)COD → HD + CD(2)OD reaction is calculated to be much slower than the D + H(3)COH → HD + CH(2)OH, in agreement with low-temperature solid-state experiments, which suggests the preference for H (as opposed to D) abstraction from the C-end of methanol to be the mechanism by which interstellar methanol is deuterium-enriched.

摘要

我们计算了低温下不同同位素的氢提取反应 H + H(3)COH → H(2) + CH(2)OH/CH(3)O 的反应速率常数。这些解释了星际云中甲醇氘代形式的已知丰度,其中 CH(2)DOH 的丰度可以几乎与 CH(3)OH 一样高。对于甲醇的 C-端和 O-端的提取,越过势垒的运动涉及到轻氢原子的移动。因此,隧穿在相对较高的温度下已经起着主导作用。我们通过力和能量的实时计算来实施谐波量子过渡态理论,以考虑这些隧穿效应。结果与之前的半经典和量子动力学计算(低至 200 K)和实验研究(低至 295 K)吻合良好。在这里,我们将速率计算扩展到更低的温度:甲醇 C-端的提取为 30 K,甲醇 OH-端的提取为 80 K。在所有温度下,从 C-端的提取都比从 O-端的提取更优先,在较低的温度下更为强烈。此外,隧穿行为强烈影响动力学同位素效应(KIEs)。D + H(3)COH → HD + CH(2)OH 的振动绝热势垒低于 H + H(3)COH → H(2) + CH(2)OH,这导致在高温下出现逆 KIE(k(H)/k(D) < 1),与之前的实验和计算结果一致。然而,由于轻氢原子的隧穿更为容易,因此在约 135 K 以下,H 的提取比 D 的提取更有利,在 30 K 时 KIE k(H)/k(D)为 11.2。计算得到 H + D(3)COD → HD + CD(2)OD 的反应速度比 D + H(3)COH → HD + CH(2)OH 慢得多,这与低温固态实验一致,这表明在星际甲醇中,相对于 D(氘),H(氢)优先从甲醇的 C-端提取是甲醇被氘富集的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验