Naval Research Laboratory, Washington, DC 20375, USA.
Phys Rev Lett. 2011 Jul 29;107(5):054501. doi: 10.1103/PhysRevLett.107.054501. Epub 2011 Jul 27.
A deflagration-to-detonation transition (DDT) can occur in environments ranging from experimental and industrial systems to astrophysical thermonuclear (type Ia) supernovae explosions. Substantial progress has been made in explaining the nature of DDT in confined systems with walls, internal obstacles, or preexisting shocks. It remains unclear, however, whether DDT can occur in unconfined media. Here we use direct numerical simulations (DNS) to show that for high enough turbulent intensities unconfined, subsonic, premixed, turbulent flames are inherently unstable to DDT. The associated mechanism, based on the nonsteady evolution of flames faster than the Chapman-Jouguet deflagrations, is qualitatively different from the traditionally suggested spontaneous reaction-wave model. Critical turbulent flame speeds, predicted by this mechanism for the onset of DDT, are in agreement with DNS results.
爆燃转爆轰(DDT)可在从实验和工业系统到天体物理热核(Ia 型)超新星爆炸等各种环境中发生。在解释具有壁、内部障碍物或预先存在的激波的受限系统中的 DDT 性质方面已经取得了重大进展。然而,目前尚不清楚 DDT 是否可在无约束介质中发生。在这里,我们使用直接数值模拟(DNS)表明,对于足够高的湍流强度,无约束的、亚声速的、预混的、湍流火焰本质上是不稳定的,容易发生 DDT。所涉及的机制基于比 Chapman-Jouguet 爆轰更快的火焰的非稳态演化,与传统上提出的自发反应波模型在性质上有所不同。该机制预测的 DDT 起始的临界湍流火焰速度与 DNS 结果一致。