Suppr超能文献

具有任意直流和交流场的福克-普朗克方程:连分数法

Fokker-Planck equation with arbitrary dc and ac fields: continued fraction method.

作者信息

Lee Chee Kong, Gong Jiangbin

机构信息

Centre for Quantum Technologies, National University of Singapore, Singapore 117543, Singapore.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011104. doi: 10.1103/PhysRevE.84.011104. Epub 2011 Jul 6.

Abstract

The continued fraction method (CFM) is used to solve the Fokker-Planck equation with arbitrary dc and ac fields. With an appropriate choice of basis functions, the Fokker-Planck equation is converted into a set of linear algebraic equations with short-ranged coupling and then CFM is implemented to obtain numerical solutions with high efficiency. Both a proposed perturbative CFM and the numerically exact matrix CFM are used to study the nonlinear response of driven systems, with their results compared to assess the validity regime of the perturbative approach. The proposed perturbative CFM approach needs scalar quantities only and hence is more efficient within its validity regime. Two nonlinear systems of different nature are used as examples: molecular dipole (rotational Brownian motion) and particle in a periodic potential (translational Brownian motion). The associated full dynamics is presented in the compact form of hysteresis loops. It is observed that as the strength of an AC driving field increases, pronounced nonlinear effects are manifested in the deformation of the hysteresis loops.

摘要

连分数法(CFM)用于求解具有任意直流和交流场的福克 - 普朗克方程。通过适当选择基函数,福克 - 普朗克方程被转化为一组具有短程耦合的线性代数方程,然后采用连分数法高效地获得数值解。提出的微扰连分数法和数值精确的矩阵连分数法都用于研究驱动系统的非线性响应,通过比较它们的结果来评估微扰方法的有效范围。所提出的微扰连分数法仅需要标量,因此在其有效范围内更高效。以两个不同性质的非线性系统为例:分子偶极子(旋转布朗运动)和周期势场中的粒子(平移布朗运动)。相关的完整动力学以磁滞回线的紧凑形式呈现。可以观察到,随着交流驱动场强度的增加,磁滞回线的变形中会表现出明显的非线性效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验