Démery Vincent, Dean David S
Laboratoire de Physique Théorique, IRSAMC, Université Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse Cedex 4, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011148. doi: 10.1103/PhysRevE.84.011148. Epub 2011 Jul 29.
We study the effective diffusion constant of a Brownian particle linearly coupled to a thermally fluctuating scalar field. We use a path-integral method to compute the effective diffusion coefficient perturbatively to lowest order in the coupling constant. This method can be applied to cases where the field is affected by the particle (an active tracer) and cases where the tracer is passive. Our results are applicable to a wide range of physical problems, from a protein diffusing in a membrane to the dispersion of a passive tracer in a random potential. In the case of passive diffusion in a scalar field, we show that the coupling to the field can, in some cases, speed up the diffusion corresponding to a form of stochastic resonance. Our results on passive diffusion are also confirmed via a perturbative calculation of the probability density function of the particle in a Fokker-Planck formulation of the problem. Numerical simulations on simplified systems corroborate our results.
我们研究了与热涨落标量场线性耦合的布朗粒子的有效扩散常数。我们使用路径积分方法,在耦合常数的最低阶微扰下计算有效扩散系数。该方法可应用于场受粒子影响的情况(主动示踪剂)以及示踪剂为被动的情况。我们的结果适用于广泛的物理问题,从在膜中扩散的蛋白质到被动示踪剂在随机势场中的弥散。在标量场中的被动扩散情况下,我们表明,在某些情况下,与场的耦合可以加速扩散,这对应于一种随机共振形式。我们关于被动扩散的结果也通过在福克 - 普朗克问题表述中对粒子概率密度函数的微扰计算得到了证实。对简化系统的数值模拟证实了我们的结果。