Suppr超能文献

荧光假单胞菌有益突变的适应成本和适合度效应。

Cost of adaptation and fitness effects of beneficial mutations in Pseudomonas fluorescens.

机构信息

Bioinformatics Research Center, Aarhus University, 8000C Aarhus, Denmark.

出版信息

Genetics. 2011 Nov;189(3):939-49. doi: 10.1534/genetics.111.130468. Epub 2011 Aug 25.

Abstract

Adaptations are constructed through the sequential substitution of beneficial mutations by natural selection. However, the rarity of beneficial mutations has precluded efforts to describe even their most basic properties. Do beneficial mutations typically confer small or large fitness gains? Are their fitness effects environment specific, or are they broadly beneficial across a range of environments? To answer these questions, we used two subsets (n = 18 and n = 63) of a large library of mutants carrying antibiotic resistance mutations in the bacterium Pseudomonas fluorescens whose fitness, along with the antibiotic sensitive ancestor, was assayed across 95 novel environments differing in the carbon source available for growth. We explore patterns of genotype-by-environment (G × E) interactions and ecological specialization among the 18 mutants initially found superior to the sensitive ancestor in one environment. We find that G × E is remarkably similar between the two sets of mutants and that beneficial mutants are not typically associated with large costs of adaptation. Fitness effects among beneficial mutants depart from a strict exponential distribution: they assume a variety of shapes that are often roughly L shaped but always right truncated. Distributions of (beneficial) fitness effects predicted by a landscape model assuming multiple traits underlying fitness and a single optimum often provide a good description of the empirical distributions in our data. Simulations of data sets containing a mixture of single and double mutants under this landscape show that inferences about the distribution of fitness effects of beneficial mutants is quite robust to contamination by second-site mutations.

摘要

适应是通过自然选择对有利突变的顺序替代而构建的。然而,有利突变的稀有性使得我们无法描述它们最基本的特性。有利突变通常会带来小的还是大的适应增益?它们的适应效应是特定于环境的,还是在一系列环境中普遍有益?为了回答这些问题,我们使用了在荧光假单胞菌中携带抗生素抗性突变的大型突变体文库的两个子集(n=18 和 n=63),这些突变体的适应度以及抗生素敏感的祖先在 95 种新型环境中进行了测定,这些环境在生长可利用的碳源方面存在差异。我们探讨了在一个环境中最初优于敏感祖先的 18 个突变体之间的基因型-环境(G×E)相互作用和生态特化模式。我们发现,两个突变体集中的 G×E 非常相似,而且有利突变体通常与较大的适应成本无关。有利突变体之间的适应度效应偏离严格的指数分布:它们呈现出多种形状,通常大致呈 L 形,但总是右截断。在假定适应度受多个性状和单个最佳值控制的景观模型预测的有利突变体的(有利)适应度效应分布与我们数据中的经验分布非常吻合。在这种景观下,包含单突变体和双突变体混合物的数据集的模拟表明,对有利突变体的适应度效应分布的推断对第二位置突变的污染具有很强的稳健性。

相似文献

1
Cost of adaptation and fitness effects of beneficial mutations in Pseudomonas fluorescens.
Genetics. 2011 Nov;189(3):939-49. doi: 10.1534/genetics.111.130468. Epub 2011 Aug 25.
4
The distribution of fitness effects of new beneficial mutations in Pseudomonas fluorescens.
Biol Lett. 2011 Feb 23;7(1):98-100. doi: 10.1098/rsbl.2010.0547. Epub 2010 Jul 21.
5
Evolution of Fitness Trade-Offs in Locally Adapted Populations of Pseudomonas fluorescens.
Am Nat. 2015 Oct;186 Suppl 1:S48-59. doi: 10.1086/682932. Epub 2015 Aug 31.
6
The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens.
Proc Natl Acad Sci U S A. 2004 May 25;101(21):8072-7. doi: 10.1073/pnas.0307195101. Epub 2004 May 18.
7
The fitness effect of mutations across environments: Fisher's geometrical model with multiple optima.
Evolution. 2015 Jun;69(6):1433-1447. doi: 10.1111/evo.12671. Epub 2015 Jun 10.
9
Adaptive landscapes in evolving populations of Pseudomonas fluorescens.
Evolution. 2011 Nov;65(11):3048-59. doi: 10.1111/j.1558-5646.2011.01333.x. Epub 2011 May 23.

引用本文的文献

2
Competition and coevolution drive the evolution and the diversification of CRISPR immunity.
Nat Ecol Evol. 2022 Oct;6(10):1480-1488. doi: 10.1038/s41559-022-01841-9. Epub 2022 Aug 15.
3
Hybrid fitness effects modify fixation probabilities of introgressed alleles.
G3 (Bethesda). 2022 Jul 6;12(7). doi: 10.1093/g3journal/jkac113.
6
Quantifying the Evolutionary Constraints and Potential of Hepatitis C Virus NS5A Protein.
mSystems. 2021 Apr 13;6(2):e01111-20. doi: 10.1128/mSystems.01111-20.
7
The Adaptive Potential of the Middle Domain of Yeast Hsp90.
Mol Biol Evol. 2021 Jan 23;38(2):368-379. doi: 10.1093/molbev/msaa211.
8
Larger bacterial populations evolve heavier fitness trade-offs and undergo greater ecological specialization.
Heredity (Edinb). 2020 Jun;124(6):726-736. doi: 10.1038/s41437-020-0308-x. Epub 2020 Mar 18.
9
Genetic Paths to Evolutionary Rescue and the Distribution of Fitness Effects Along Them.
Genetics. 2020 Feb;214(2):493-510. doi: 10.1534/genetics.119.302890. Epub 2019 Dec 10.
10
The fitness landscape of the codon space across environments.
Heredity (Edinb). 2018 Nov;121(5):422-437. doi: 10.1038/s41437-018-0125-7. Epub 2018 Aug 20.

本文引用的文献

1
MOLECULAR EVOLUTION OVER THE MUTATIONAL LANDSCAPE.
Evolution. 1984 Sep;38(5):1116-1129. doi: 10.1111/j.1558-5646.1984.tb00380.x.
2
Parallel evolution and local differentiation in quinolone resistance in Pseudomonas aeruginosa.
Microbiology (Reading). 2011 Apr;157(Pt 4):937-944. doi: 10.1099/mic.0.046870-0. Epub 2011 Feb 3.
3
Mutational effects and population dynamics during viral adaptation challenge current models.
Genetics. 2011 Jan;187(1):185-202. doi: 10.1534/genetics.110.121400. Epub 2010 Nov 1.
4
The distribution of fitness effects of new beneficial mutations in Pseudomonas fluorescens.
Biol Lett. 2011 Feb 23;7(1):98-100. doi: 10.1098/rsbl.2010.0547. Epub 2010 Jul 21.
5
The properties of adaptive walks in evolving populations of fungus.
PLoS Biol. 2009 Nov;7(11):e1000250. doi: 10.1371/journal.pbio.1000250. Epub 2009 Nov 24.
6
The distribution of fitness effects of beneficial mutations in Pseudomonas aeruginosa.
PLoS Genet. 2009 Mar;5(3):e1000406. doi: 10.1371/journal.pgen.1000406. Epub 2009 Mar 6.
7
Complex ciprofloxacin resistome revealed by screening a Pseudomonas aeruginosa mutant library for altered susceptibility.
Antimicrob Agents Chemother. 2008 Dec;52(12):4486-91. doi: 10.1128/AAC.00222-08. Epub 2008 Sep 29.
8
A general extreme value theory model for the adaptation of DNA sequences under strong selection and weak mutation.
Genetics. 2008 Nov;180(3):1627-43. doi: 10.1534/genetics.108.088716. Epub 2008 Sep 14.
9
Beneficial fitness effects are not exponential for two viruses.
J Mol Evol. 2008 Oct;67(4):368-76. doi: 10.1007/s00239-008-9153-x. Epub 2008 Sep 9.
10
A genome-wide view of the spectrum of spontaneous mutations in yeast.
Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9272-7. doi: 10.1073/pnas.0803466105. Epub 2008 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验