Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.
IEEE Trans Pattern Anal Mach Intell. 1985 Jan;7(1):17-34. doi: 10.1109/tpami.1985.4767615.
Computational models of the human stereo system can provide insight into general information processing constraints that apply to any stereo system, either artificial or biological. In 1977 Marr and Poggio proposed one such computational model, which was characterized as matching certain feature points in difference-of-Gaussian filtered images and using the information obtained by matching coarser resolution representations to restrict the search space for matching finer resolution representations. An implementation of the algorithm and its testing on a range of images was reported in 1980. Since then a number of psychophysical experiments have suggested possible refinements to the model and modifications to the algorithm. As well, recent computational experiments applying the algorithm to a variety of natural images, especially aerial photographs, have led to a number of modifications. In this paper, we present a version of the Marr-Poggio-Grimson algorithm that embodies these modifications, and we illustrate its performance on a series of natural images.
人类立体视觉系统的计算模型可以深入了解适用于任何立体系统(无论是人工的还是生物的)的一般信息处理约束。1977 年,Marr 和 Poggio 提出了这样的计算模型,其特征在于匹配高斯差分滤波图像中的某些特征点,并使用通过匹配较粗分辨率表示形式获得的信息来限制匹配更精细分辨率表示形式的搜索空间。该算法的实现及其在一系列图像上的测试于 1980 年报告。从那时起,许多心理物理学实验提出了对该模型的可能改进和对算法的修改。此外,最近将该算法应用于各种自然图像(尤其是航空照片)的计算实验导致了许多修改。在本文中,我们提出了一种体现这些修改的 Marr-Poggio-Grimson 算法版本,并在一系列自然图像上展示了其性能。