Suppr超能文献

人类立体视觉中的对应搜索是一个由粗到细的过程吗?

Is correspondence search in human stereo vision a coarse-to-fine process?

作者信息

Mallot H A, Gillner S, Arndt P A

机构信息

Max-Planck-Institut für biologische Kybernetik, Tübingen, Germany.

出版信息

Biol Cybern. 1996 Feb;74(2):95-106. doi: 10.1007/BF00204198.

Abstract

One possible strategy for the solution of the correspondence problem of stereo matching is the coarse-to-fine mechanism: The matching process starts with a lowpass-filtered version of the stereogram where only a few, high-contrast image features can be extracted and the probability of false matches is therefore low. In subsequent stages, information from higher spatial frequencies is used gradually to improve the correspondence data obtained on the coarser scales. Coarse-to-fine strategies predict that information from coarse scale is used to disambiguate matching information on finer scales. We have tested this prediction by means of the wallpaper illusion using periodic intensity-profiles with different matching ambiguities on different spatial scale. Our psychophysical experiments show (i) that unambiguous information at coarse scale is not always used to disambiguate finer scale information, (ii) that unambiguous fine-scale information can be used to disambiguate coarse-scale information and (iii) that low spatial frequency is more efficient for disambiguation than higher frequency. We conclude that the human stereo vision system does not always proceed from coarse to fine. As an alternative scheme for scale-space integration, we discuss more symmetric schemes such as maximum likelihood combinations of data from different channels.

摘要

解决立体匹配对应问题的一种可能策略是从粗到精机制

匹配过程从立体图的低通滤波版本开始,在该版本中只能提取少数高对比度图像特征,因此误匹配的概率较低。在后续阶段,逐渐使用来自更高空间频率的信息来改善在较粗尺度上获得的对应数据。从粗到精策略预测,来自粗尺度的信息用于消除较细尺度上的匹配信息的歧义。我们通过壁纸错觉进行了测试,使用了在不同空间尺度上具有不同匹配歧义的周期性强度轮廓。我们的心理物理学实验表明:(i)粗尺度上的明确信息并不总是用于消除较细尺度信息的歧义;(ii)明确的细尺度信息可用于消除粗尺度信息的歧义;(iii)低空间频率在消除歧义方面比高频率更有效。我们得出结论,人类立体视觉系统并不总是从粗到精进行处理。作为尺度空间整合的替代方案,我们讨论了更对称的方案,例如来自不同通道的数据的最大似然组合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验