Suppr超能文献

知识组织中的概念聚类。

Conceptual clustering in knowledge organization.

机构信息

School of Electrical Engineering, Purdue University, West Lafayette, IN 47907.

出版信息

IEEE Trans Pattern Anal Mach Intell. 1985 May;7(5):592-8. doi: 10.1109/tpami.1985.4767706.

Abstract

Knowledge organization is a very important step in building an expert system. The problem is how to organize knowledge into a conceptual structure and thus make it complete, concise, and consistent. In this paper, concepts used in knowledge description are divided into tangible ones and intermediate ones depending on whether or not they appear in the input or the output of the system. Intermediate concepts and their relationships with tangible concepts are subjected to changes. A distance measure for rules and an algorithm for conceptual clustering are described. New intermediate concepts are generated using this algorithm. A few new concepts may replace a large number of old relationships and also generate new rules for the system. An experiment on traditional Chinese medicine shows that the proposed method produces results similar to those generated by experts.

摘要

知识组织是构建专家系统的重要步骤。问题是如何将知识组织成概念结构,使其完整、简洁、一致。本文根据概念是否出现在系统的输入或输出中,将知识描述中使用的概念分为有形概念和中间概念。中间概念及其与有形概念的关系会发生变化。本文描述了规则的距离度量和概念聚类的算法。该算法用于生成新的中间概念。少量新概念可能会替代大量旧关系,并为系统生成新规则。对中医的实验表明,所提出的方法产生的结果与专家生成的结果相似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验