Huangfu Cunqing, Zeng Yi, Wang Yuwei
Research Center for Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.
Front Neuroinform. 2020 Aug 18;14:38. doi: 10.3389/fninf.2020.00038. eCollection 2020.
The literature on neuroscience has grown rapidly in recent years with the emergence of new domains of research. In the context of this progress, creating a knowledge organization system (KOS) that can quickly incorporate terms of a given domain is an important aim in the area. In this article, we develop a systematic method based on word representation and the agglomerative clustering algorithm to semi-automatically build a hierarchical KOS. We collected 35,832 research keywords and 11,497 research methods from PubMed Central database, and organized them in a hierarchical structure according to semantic distance. We show that the proposed KOS can help find terms related to the given topics, analyze articles related to specific domains of research, and characterize the features of article clusters. The proposed method can significantly reduce the manual work required by experts to organize the KOS.
近年来,随着神经科学新研究领域的出现,该领域的文献增长迅速。在这一进展的背景下,创建一个能够快速纳入特定领域术语的知识组织系统(KOS)是该领域的一个重要目标。在本文中,我们开发了一种基于词表示和凝聚聚类算法的系统方法,以半自动构建分层KOS。我们从PubMed Central数据库中收集了35,832个研究关键词和11,497种研究方法,并根据语义距离将它们组织成层次结构。我们表明,所提出的KOS有助于找到与给定主题相关的术语,分析与特定研究领域相关的文章,并表征文章聚类的特征。所提出的方法可以显著减少专家组织KOS所需的人工工作。