SRI International, Menlo Park, CA 94025.
IEEE Trans Pattern Anal Mach Intell. 1986 Feb;8(2):234-9. doi: 10.1109/tpami.1986.4767776.
Gaussian filtering is an important tool in image processing and computer vision. In this paper we discuss the background of Gaussian filtering and look at some methods for implementing it. Consideration of the central limit theorem suggests using a cascade of simple'' filters as a means of computing Gaussian filters. Among simple'' filters, uniform-coefficient finite-impulse-response digital filters are especially economical to implement. The idea of cascaded uniform filters has been around for a while [13], [16]. We show that this method is economical to implement, has good filtering characteristics, and is appropriate for hardware implementation. We point out an equivalence to one of Burt's methods [1], [3] under certain circumstances. As an extension, we describe an approach to implementing a Gaussian Pyramid which requires approximately two addition operations per pixel, per level, per dimension. We examine tradeoffs in choosing an algorithm for Gaussian filtering, and finally discuss an implementation.
高斯滤波是图像处理和计算机视觉中的一个重要工具。在本文中,我们讨论了高斯滤波的背景,并探讨了一些实现它的方法。考虑到中心极限定理,我们建议使用“简单”滤波器的级联作为计算高斯滤波器的一种手段。在“简单”滤波器中,均匀系数有限脉冲响应数字滤波器特别便于实现。级联均匀滤波器的思想已经存在了一段时间[13],[16]。我们表明,这种方法易于实现,具有良好的滤波特性,并且适合硬件实现。我们指出,在某些情况下,这种方法与 Burt 的方法之一[1],[3]等效。作为扩展,我们描述了一种实现高斯金字塔的方法,该方法每像素、每级别、每维需要大约两个加法运算。我们研究了高斯滤波算法的选择权衡,最后讨论了一种实现方法。