Suppr超能文献

比较硫酸盐、硝酸盐或磷酸盐胁迫下玉米根系通气组织形成过程的时空分析。

Comparative spatiotemporal analysis of root aerenchyma formation processes in maize due to sulphate, nitrate or phosphate deprivation.

机构信息

Plant Physiology Laboratory, Plant Biology Department, Faculty of Agricultural Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855, Athens, Greece.

出版信息

Protoplasma. 2012 Jul;249(3):671-86. doi: 10.1007/s00709-011-0309-y. Epub 2011 Aug 26.

Abstract

Nitrate (N), phosphate (P) or sulphate (S) deprivation causes aerenchyma formation in maize (Zea mays L.) nodal roots. The exact mechanisms that trigger the formation of aerenchyma under these circumstances are unclear. We have compared aerenchyma distribution across the nodal roots of first whorl (just emerging in 10-day-old seedlings), which were subject to S, N or P deprivation over a period of 10 days in connection with oxygen consumption, ATP concentration, cellulase and polygalacturonase activity in the whole root. The effect of deprivation on aerenchyma formation was examined using light and electron microscopy, along with in situ detection of calcium and of reactive oxygen species (ROS) by fluorescence microscopy. Aerenchyma was not found in the root base regardless of the deprivation. Programmed cell death (PCD) was observed near the root tip, either within the first two days (-N) or a few days later (-S, -P) of the treatment. Roots at day 6 under all three nutrient-deprived conditions showed signs of PCD 1 cm behind the cap, whereas only N-deprived root cells 0.5 cm behind the cap showed severe ultrastructural alterations, due to advanced PCD. The lower ATP concentration and the higher oxygen consumptions observed at day 2 in N-, P- and S-deprived roots compared to the control indicated that PCD may be triggered by perturbations in energy status of the root. The peaks of cellulase activity located between days 3 (-N) and 6 (-P), along with the respective alterations in polygalacturonase activity, indicated a coordination which preceded aerenchyma formation. ROS and calcium seemed to contribute to PCD initiation, with ROS possessing dual roles as signals and eliminators. All the examined parameters presented both common features and characteristic variations among the deprivations.

摘要

硝酸盐 (N)、磷酸盐 (P) 或硫酸盐 (S) 剥夺会导致玉米 (Zea mays L.) 节根形成通气组织。在这些情况下,触发通气组织形成的确切机制尚不清楚。我们比较了第一叶(10 天大的幼苗刚长出)节点根中通气管的分布,这些节点根在 10 天的时间里受到 S、N 或 P 的剥夺,同时还比较了整个根中的耗氧量、ATP 浓度、纤维素酶和多聚半乳糖醛酸酶活性。使用光镜和电子显微镜以及通过荧光显微镜对钙和活性氧 (ROS) 的原位检测,检查了剥夺对通气组织形成的影响。无论剥夺与否,在根基部都没有发现通气组织。程序性细胞死亡 (PCD) 在根尖附近观察到,要么在处理的前两天 (-N) 内,要么在几天后 (-S、-P) 内。在所有三种营养剥夺条件下,第 6 天的根在帽下 1 厘米处显示出 PCD 的迹象,而只有帽下 0.5 厘米处的 N 剥夺根细胞显示出严重的超微结构改变,这是由于 PCD 进展所致。与对照相比,在 N、P 和 S 剥夺根中,第 2 天观察到的较低的 ATP 浓度和较高的耗氧量表明,PCD 可能是由根的能量状态的波动引发的。在 N 剥夺(第 3 天)和 P 剥夺(第 6 天)期间观察到的纤维素酶活性峰值,以及多聚半乳糖醛酸酶活性的相应变化,表明通气组织形成之前存在协调。ROS 和钙似乎有助于 PCD 的启动,ROS 具有信号和消除剂的双重作用。所有检查的参数在剥夺之间既有共同特征,也有特征变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验