Mazina Anastasia, Shumilina Julia, Gazizova Natalia, Repkin Egor, Frolov Andrej, Minibayeva Farida
Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia.
Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia.
Life (Basel). 2023 Oct 8;13(10):2024. doi: 10.3390/life13102024.
Autophagy is a highly conserved catabolic process in eukaryotic cells. Reactive nitrogen species play roles as inductors and signaling molecules of autophagy. A key mechanism of NO-mediated signaling is S-nitrosylation, a post-translational modification (PTM) of proteins at cysteine residues. In the present work, we analyzed the patterns of protein S-nitrosylation during the induction of autophagy in roots. The accumulation of S-nitrosylated proteins in the cells during autophagy induced with KNO and antimycin A was visualized using monoclonal antibodies with a Western blot analysis, and proteins were identified using a standard bottom-up proteomics approach. Protein S-nitrosylation is a labile and reversible PTM, and therefore the SNO group can be lost during experimental procedures. A subsequent bioinformatic analysis using predictive algorithms and protein-ligand docking showed that identified proteins possess hypothetical S-nitrosylation sites. Analyzing protein-protein interaction networks enabled us to discover the targets that can directly interact with autophagic proteins, and those that can interact with them indirectly via key multifunctional regulatory proteins. In this study, we show that S-nitrosylation is a key mechanism of NO-mediated regulation of autophagy in wheat roots. A combination of in silico predictive algorithms with a mass spectrometry analysis provides a targeted approach for the identification of S-nitrosylated proteins.
自噬是真核细胞中一种高度保守的分解代谢过程。活性氮物质作为自噬的诱导剂和信号分子发挥作用。一氧化氮(NO)介导的信号传导的一个关键机制是S-亚硝基化,这是一种在半胱氨酸残基处对蛋白质进行的翻译后修饰(PTM)。在本研究中,我们分析了根中自噬诱导过程中蛋白质S-亚硝基化的模式。使用单克隆抗体通过蛋白质免疫印迹分析可视化了用硝酸钾(KNO)和抗霉素A诱导自噬过程中细胞内S-亚硝基化蛋白质的积累,并使用标准的自下而上的蛋白质组学方法鉴定了蛋白质。蛋白质S-亚硝基化是一种不稳定且可逆的PTM,因此SNO基团可能在实验过程中丢失。随后使用预测算法和蛋白质-配体对接进行的生物信息学分析表明,鉴定出的蛋白质具有假设的S-亚硝基化位点。通过分析蛋白质-蛋白质相互作用网络,我们能够发现可以直接与自噬蛋白相互作用的靶标,以及那些可以通过关键的多功能调节蛋白间接与它们相互作用的靶标。在本研究中,我们表明S-亚硝基化是小麦根中NO介导的自噬调节的关键机制。将计算机预测算法与质谱分析相结合,为鉴定S-亚硝基化蛋白质提供了一种有针对性的方法。