Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne.
J Phys Chem B. 2011 Dec 8;115(48):14263-8. doi: 10.1021/jp205084u. Epub 2011 Aug 26.
The role of sound in the dynamics of mesoscale systems is typically neglected, since frequently the associated time scales are much smaller than all the other time scales of interest. However, for sufficiently small objects embedded in a solvent with a sufficiently small sound velocity, sound can play a crucial role. In particular, behavior resembling viscoelasticity has been theoretically predicted for nonviscoelastic fluids. This effect is due to the interference of the propagation of sound waves caused by the solute particle's motion and hydrodynamic vortex formation. We demonstrate this effect, known as backtracking, in computer simulations employing the method of multiparticle collision dynamics. We systematically study the influence of sound on the dynamics of the solute particle, and find that it disappears in the long-time limit. Thus, we confirm that sonic effects at the single-particle level can be neglected at sufficiently long times.
声音在介观系统动力学中的作用通常被忽略,因为相关的时间尺度通常比所有其他感兴趣的时间尺度都小得多。然而,对于嵌入在溶剂中的足够小的物体,如果溶剂的声速足够小,声音可以发挥关键作用。特别是,对于非粘性流体,已经从理论上预测出类似于粘弹性的行为。这种效应是由于溶质颗粒运动引起的声波传播的干扰和流体力学涡旋的形成。我们在使用多粒子碰撞动力学方法的计算机模拟中证明了这种被称为回溯的效应。我们系统地研究了声音对溶质颗粒动力学的影响,发现它在长时间极限下消失了。因此,我们证实了在足够长的时间内,可以忽略单粒子水平上的声波效应。