Suppr超能文献

始新世古鲸类动物的头骨不对称性与水中定向听觉的进化

Cranial asymmetry in Eocene archaeocete whales and the evolution of directional hearing in water.

机构信息

Museum of Paleontology, Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14545-8. doi: 10.1073/pnas.1108927108. Epub 2011 Aug 22.

Abstract

Eocene archaeocete whales gave rise to all modern toothed and baleen whales (Odontoceti and Mysticeti) during or near the Eocene-Oligocene transition. Odontocetes have asymmetrical skulls, with asymmetry linked to high-frequency sound production and echolocation. Mysticetes are generally assumed to have symmetrical skulls and lack high-frequency hearing. Here we show that protocetid and basilosaurid archaeocete skulls are distinctly and directionally asymmetrical. Archaeocete asymmetry involves curvature and axial torsion of the cranium, but no telescoping. Cranial asymmetry evolved in Eocene archaeocetes as part of a complex of traits linked to directional hearing (such as pan-bone thinning of the lower jaws, mandibular fat pads, and isolation of the ear region), probably enabling them to hear the higher sonic frequencies of sound-producing fish on which they preyed. Ultrasonic echolocation evolved in Oligocene odontocetes, enabling them to find silent prey. Asymmetry and much of the sonic-frequency range of directional hearing were lost in Oligocene mysticetes during the shift to low-frequency hearing and bulk-straining predation.

摘要

始新世古鲸类动物在始新世-渐新世过渡期或附近进化为所有现代齿鲸类动物(齿鲸和须鲸)和须鲸类动物(须鲸)。齿鲸类动物的头骨不对称,不对称与高频声音产生和回声定位有关。须鲸类动物通常被认为具有对称的头骨,缺乏高频听力。在这里,我们表明,原鲸类和龙王鲸类古鲸类动物的头骨明显且定向不对称。古鲸类动物的不对称性涉及颅骨的曲率和轴向扭转,但没有伸缩。始新世古鲸类动物的头骨不对称性是定向听力相关特征的一部分,这些特征包括下颚的pan 骨变薄、下颌脂肪垫和耳部区域的隔离,这可能使它们能够听到捕食的产声鱼类的高频声音。在渐新世的齿鲸类动物中,超声回声定位进化了,使它们能够找到无声的猎物。在渐新世向低频听觉和大规模捕食的转变过程中,须鲸类动物失去了不对称性和大部分定向听觉的超声频率范围。

相似文献

1
Cranial asymmetry in Eocene archaeocete whales and the evolution of directional hearing in water.
Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14545-8. doi: 10.1073/pnas.1108927108. Epub 2011 Aug 22.
2
Cranial symmetry in baleen whales (Cetacea, Mysticeti) and the occurrence of cranial asymmetry throughout cetacean evolution.
Naturwissenschaften. 2015 Oct;102(9-10):58. doi: 10.1007/s00114-015-1309-0. Epub 2015 Sep 4.
3
Wonky whales: the evolution of cranial asymmetry in cetaceans.
BMC Biol. 2020 Jul 10;18(1):86. doi: 10.1186/s12915-020-00805-4.
6
Archaeocete-like jaws in a baleen whale.
Biol Lett. 2012 Feb 23;8(1):94-6. doi: 10.1098/rsbl.2011.0690. Epub 2011 Aug 17.
7
Infrasonic and Ultrasonic Hearing Evolved after the Emergence of Modern Whales.
Curr Biol. 2017 Jun 19;27(12):1776-1781.e9. doi: 10.1016/j.cub.2017.04.061. Epub 2017 Jun 8.
8
Drivers of morphological evolution in the toothed whale jaw.
Curr Biol. 2024 Jan 22;34(2):273-285.e3. doi: 10.1016/j.cub.2023.11.056. Epub 2023 Dec 19.
9
The Origin of High-Frequency Hearing in Whales.
Curr Biol. 2016 Aug 22;26(16):2144-9. doi: 10.1016/j.cub.2016.06.004. Epub 2016 Aug 4.
10
The tempo of cetacean cranial evolution.
Curr Biol. 2022 May 23;32(10):2233-2247.e4. doi: 10.1016/j.cub.2022.04.060. Epub 2022 May 9.

引用本文的文献

1
Skull sinuses precluded extinct crocodile relatives from cetacean-style deep diving as they transitioned from land to sea.
R Soc Open Sci. 2024 Oct 30;11(10):241272. doi: 10.1098/rsos.241272. eCollection 2024 Oct.
2
Learning from the heaviest ancient whale.
Innovation (Camb). 2023 Aug 17;4(5):100501. doi: 10.1016/j.xinn.2023.100501. eCollection 2023 Sep 11.
3
The ontogeny of asymmetry in echolocating whales.
Proc Biol Sci. 2022 Aug 10;289(1980):20221090. doi: 10.1098/rspb.2022.1090. Epub 2022 Aug 3.
4
Wonky whales: the evolution of cranial asymmetry in cetaceans.
BMC Biol. 2020 Jul 10;18(1):86. doi: 10.1186/s12915-020-00805-4.
8
Diffusion tractography reveals pervasive asymmetry of cerebral white matter tracts in the bottlenose dolphin (Tursiops truncatus).
Brain Struct Funct. 2018 May;223(4):1697-1711. doi: 10.1007/s00429-017-1525-9. Epub 2017 Nov 30.
10
Cranial symmetry in baleen whales (Cetacea, Mysticeti) and the occurrence of cranial asymmetry throughout cetacean evolution.
Naturwissenschaften. 2015 Oct;102(9-10):58. doi: 10.1007/s00114-015-1309-0. Epub 2015 Sep 4.

本文引用的文献

2
A new acoustic portal into the odontocete ear and vibrational analysis of the tympanoperiotic complex.
PLoS One. 2010 Aug 4;5(8):e11927. doi: 10.1371/journal.pone.0011927.
3
Acoustic pathways revealed: simulated sound transmission and reception in Cuvier's beaked whale (Ziphius cavirostris).
Bioinspir Biomim. 2008 Mar;3:016001. doi: 10.1088/1748-3182/3/1/016001. Epub 2008 Feb 4.
6
Sound transmission in archaic and modern whales: anatomical adaptations for underwater hearing.
Anat Rec (Hoboken). 2007 Jun;290(6):716-33. doi: 10.1002/ar.20528.
7
Head morphology in perinatal dolphins: a window into phylogeny and ontogeny.
J Morphol. 2006 Nov;267(11):1295-315. doi: 10.1002/jmor.10477.
8
Origin of whales from early artiodactyls: hands and feet of Eocene Protocetidae from Pakistan.
Science. 2001 Sep 21;293(5538):2239-42. doi: 10.1126/science.1063902. Epub 2001 Sep 19.
9
A new Eocene archaeocete (Mammalia, Cetacea) from India and the time of origin of whales.
Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15464-8. doi: 10.1073/pnas.95.26.15464.
10
Functional morphology and homology in the odontocete nasal complex: implications for sound generation.
J Morphol. 1996 Jun;228(3):223-85. doi: 10.1002/(SICI)1097-4687(199606)228:3<223::AID-JMOR1>3.0.CO;2-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验