Genetics, Evolution, and Environment Department, University College London, Gower Street, London, WC1E 6BT, UK.
Department of Life Sciences, Natural History Museum, London, Cromwell Road, London, SW7 5BD, UK.
BMC Biol. 2020 Jul 10;18(1):86. doi: 10.1186/s12915-020-00805-4.
Unlike most mammals, toothed whale (Odontoceti) skulls lack symmetry in the nasal and facial (nasofacial) region. This asymmetry is hypothesised to relate to echolocation, which may have evolved in the earliest diverging odontocetes. Early cetaceans (whales, dolphins, and porpoises) such as archaeocetes, namely the protocetids and basilosaurids, have asymmetric rostra, but it is unclear when nasofacial asymmetry evolved during the transition from archaeocetes to modern whales. We used three-dimensional geometric morphometrics and phylogenetic comparative methods to reconstruct the evolution of asymmetry in the skulls of 162 living and extinct cetaceans over 50 million years.
In archaeocetes, we found asymmetry is prevalent in the rostrum and also in the squamosal, jugal, and orbit, possibly reflecting preservational deformation. Asymmetry in odontocetes is predominant in the nasofacial region. Mysticetes (baleen whales) show symmetry similar to terrestrial artiodactyls such as bovines. The first significant shift in asymmetry occurred in the stem odontocete family Xenorophidae during the Early Oligocene. Further increases in asymmetry occur in the physeteroids in the Late Oligocene, Squalodelphinidae and Platanistidae in the Late Oligocene/Early Miocene, and in the Monodontidae in the Late Miocene/Early Pliocene. Additional episodes of rapid change in odontocete skull asymmetry were found in the Mid-Late Oligocene, a period of rapid evolution and diversification. No high-probability increases or jumps in asymmetry were found in mysticetes or archaeocetes. Unexpectedly, no increases in asymmetry were recovered within the highly asymmetric ziphiids, which may result from the extreme, asymmetric shape of premaxillary crests in these taxa not being captured by landmarks alone.
Early ancestors of living whales had little cranial asymmetry and likely were not able to echolocate. Archaeocetes display high levels of asymmetry in the rostrum, potentially related to directional hearing, which is lost in early neocetes-the taxon including the most recent common ancestor of living cetaceans. Nasofacial asymmetry becomes a significant feature of Odontoceti skulls in the Early Oligocene, reaching its highest levels in extant taxa. Separate evolutionary regimes are reconstructed for odontocetes living in acoustically complex environments, suggesting that these niches impose strong selective pressure on echolocation ability and thus increased cranial asymmetry.
与大多数哺乳动物不同,齿鲸(齿鲸目)的头骨在鼻区和面部(鼻面)区域缺乏对称性。这种不对称性被假设与回声定位有关,回声定位可能在最早分化的齿鲸目中进化而来。早期的鲸类(鲸鱼、海豚和鼠海豚),如古鲸类,即原鲸类和古蜥鲸类,具有不对称的吻部,但在从古鲸类向现代鲸鱼的过渡过程中,鼻面不对称是何时进化的尚不清楚。我们使用三维几何形态测量学和系统发育比较方法,重建了 5000 多万年来 162 种现存和已灭绝的鲸类头骨不对称性的进化。
在古鲸类中,我们发现不对称性在吻部以及鳞骨、颧骨和眼眶中都很普遍,这可能反映了保存变形。齿鲸的不对称性主要存在于鼻面区域。须鲸(须鲸类)表现出与陆地偶蹄目动物(如牛)相似的对称性。在早渐新世,最早的齿鲸科 Xenorophidae 中出现了第一个显著的不对称性转变。在晚渐新世的巨头鲸科、晚渐新世/早中新世的抹香鲸科和 Platainistidae 以及晚中新世/早更新世的 Monodontidae 中,不对称性进一步增加。在中晚渐新世,齿鲸头骨不对称性的快速变化事件也有所增加,这是一个快速进化和多样化的时期。在须鲸或古鲸类中没有发现高概率的不对称性增加或跳跃。出乎意料的是,在高度不对称的喙鲸科中没有发现不对称性的增加,这可能是由于这些类群的前上颌嵴的极端、不对称形状仅通过地标无法捕捉到。
现存鲸鱼的早期祖先头骨不对称性很小,可能无法进行回声定位。古鲸类在吻部表现出高水平的不对称性,可能与定向听觉有关,而定向听觉在早期的新鲸类(包括现存鲸类最近的共同祖先的分类群)中已经丧失。鼻面不对称性成为早渐新世齿鲸头骨的一个重要特征,在现存类群中达到最高水平。生活在声学复杂环境中的齿鲸被重建为独立的进化机制,这表明这些小生境对回声定位能力施加了强烈的选择压力,从而导致头骨不对称性增加。