Boretius Susann, Frahm Jens
Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37077 Göttingen, Germany.
Methods Mol Biol. 2011;771:531-68. doi: 10.1007/978-1-61779-219-9_28.
Manganese-enhanced magnetic resonance imaging (MEMRI) relies on contrasts that are due to the shortening of the T (1) relaxation time of tissue water protons that become exposed to paramagnetic manganese ions. In experimental animals, the technique combines the high spatial resolution achievable by MRI with the biological information gathered by tissue-specific or functionally induced accumulations of manganese. After in vivo administration, manganese ions may enter cells via voltage-gated calcium channels. In the nervous system, manganese ions are actively transported along the axon. Based on these properties, MEMRI is increasingly used to delineate neuroanatomical structures, assess differences in functional brain activity, and unravel neuronal connectivities in both healthy animals and models of neurological disorders. Because of the cellular toxicity of manganese, a major challenge for a successful MEMRI study is to achieve the lowest possible dose for a particular biological question. Moreover, the interpretation of MEMRI findings requires a profound knowledge of the behavior of manganese in complex organ systems under physiological and pathological conditions. Starting with an overview of manganese pharmacokinetics and mechanisms of toxicity, this chapter covers experimental methods and protocols for applications in neuroscience.
锰增强磁共振成像(MEMRI)依赖于对比度,这种对比度是由于暴露于顺磁性锰离子的组织水质子的T(1)弛豫时间缩短所致。在实验动物中,该技术将MRI可实现的高空间分辨率与通过组织特异性或功能诱导的锰积累收集的生物学信息相结合。体内给药后,锰离子可通过电压门控钙通道进入细胞。在神经系统中,锰离子沿轴突被主动转运。基于这些特性,MEMRI越来越多地用于描绘神经解剖结构、评估功能性脑活动的差异以及揭示健康动物和神经疾病模型中的神经元连接性。由于锰的细胞毒性,成功进行MEMRI研究的一个主要挑战是针对特定生物学问题实现尽可能低的剂量。此外,对MEMRI结果的解释需要深入了解锰在生理和病理条件下复杂器官系统中的行为。本章从锰的药代动力学和毒性机制概述开始,涵盖了在神经科学中的应用实验方法和方案。