Suppr超能文献

海马脱髓鞘后的神经元冬眠。

Neuronal hibernation following hippocampal demyelination.

机构信息

Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA.

Department of Perioperative Medicine, Oregon Health and Science University, Portland, OR, 97239, USA.

出版信息

Acta Neuropathol Commun. 2021 Mar 1;9(1):34. doi: 10.1186/s40478-021-01130-9.

Abstract

Cognitive dysfunction occurs in greater than 50% of individuals with multiple sclerosis (MS). Hippocampal demyelination is a prominent feature of postmortem MS brains and hippocampal atrophy correlates with cognitive decline in MS patients. Cellular and molecular mechanisms responsible for neuronal dysfunction in demyelinated hippocampi are not fully understood. Here we investigate a mouse model of hippocampal demyelination where twelve weeks of treatment with the oligodendrocyte toxin, cuprizone, demyelinates over 90% of the hippocampus and causes decreased memory/learning. Long-term potentiation (LTP) of hippocampal CA1 pyramidal neurons is considered to be a major cellular readout of learning and memory in the mammalian brain. In acute slices, we establish that hippocampal demyelination abolishes LTP and excitatory post-synaptic potentials of CA1 neurons, while pre-synaptic function of Schaeffer collateral fibers is preserved. Demyelination also reduced Ca-mediated firing of hippocampal neurons in vivo. Using three-dimensional electron microscopy, we investigated the number, shape (mushroom, stubby, thin), and post-synaptic densities (PSDs) of dendritic spines that facilitate LTP. Hippocampal demyelination did not alter the number of dendritic spines. Surprisingly, dendritic spines appeared to be more mature in demyelinated hippocampi, with a significant increase in mushroom-shaped spines, more perforated PSDs, and more astrocyte participation in the tripartite synapse. RNA sequencing experiments identified 400 altered transcripts in demyelinated hippocampi. Gene transcripts that regulate myelination, synaptic signaling, astrocyte function, and innate immunity were altered in demyelinated hippocampi. Hippocampal remyelination rescued synaptic transmission, LTP, and the majority of gene transcript changes. We establish that CA1 neurons projecting demyelinated axons silence their dendritic spines and hibernate in a state that may protect the demyelinated axon and facilitates functional recovery following remyelination.

摘要

认知功能障碍发生于超过 50%的多发性硬化症(MS)患者中。海马脱髓鞘是 MS 患者死后大脑的一个突出特征,而海马萎缩与 MS 患者认知能力下降相关。导致脱髓鞘海马神经元功能障碍的细胞和分子机制尚未完全阐明。在这里,我们研究了一种海马脱髓鞘的小鼠模型,其中十二周的寡突胶质细胞毒素杯状蛋白处理导致超过 90%的海马脱髓鞘,并导致记忆/学习能力下降。海马 CA1 锥体神经元的长时程增强(LTP)被认为是哺乳动物大脑学习和记忆的主要细胞反应。在急性切片中,我们确定海马脱髓鞘会消除 CA1 神经元的 LTP 和兴奋性突触后电位,而沙斐尔侧支纤维的突触前功能得以保留。脱髓鞘还降低了海马神经元在体内的钙介导放电。使用三维电子显微镜,我们研究了促进 LTP 的树突棘的数量、形状(蘑菇形、短粗形、细瘦形)和突触后密度(PSD)。海马脱髓鞘并未改变树突棘的数量。令人惊讶的是,脱髓鞘的海马中树突棘似乎更加成熟,蘑菇形的树突棘明显增多,PSD 穿孔增多,三突触中星形胶质细胞的参与增多。RNA 测序实验鉴定出脱髓鞘海马中有 400 个改变的转录本。调节髓鞘形成、突触信号、星形胶质细胞功能和固有免疫的基因转录本在脱髓鞘的海马中发生改变。海马再髓鞘化挽救了突触传递、LTP 和大多数基因转录本的变化。我们确定投射脱髓鞘轴突的 CA1 神经元使其树突棘沉默并进入休眠状态,这种状态可能保护脱髓鞘轴突,并促进再髓鞘化后的功能恢复。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a41f/7923530/2ca3920c675d/40478_2021_1130_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验