Suppr超能文献

根定位的光敏色素生色团合成是光调控根伸长所必需的,并且影响拟南芥中根对茉莉酸的敏感性。

Root-localized phytochrome chromophore synthesis is required for photoregulation of root elongation and impacts root sensitivity to jasmonic acid in Arabidopsis.

机构信息

Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824-1312, USA.

出版信息

Plant Physiol. 2011 Nov;157(3):1138-50. doi: 10.1104/pp.111.184689. Epub 2011 Aug 29.

Abstract

Plants exhibit organ- and tissue-specific light responses. To explore the molecular basis of spatial-specific phytochrome-regulated responses, a transgenic approach for regulating the synthesis and accumulation of the phytochrome chromophore phytochromobilin (PΦB) was employed. In prior experiments, transgenic expression of the BILIVERDIN REDUCTASE (BVR) gene was used to metabolically inactivate biliverdin IXα, a key precursor in the biosynthesis of PΦB, and thereby render cells accumulating BVR phytochrome deficient. Here, we report analyses of transgenic Arabidopsis (Arabidopsis thaliana) lines with distinct patterns of BVR accumulation dependent upon constitutive or tissue-specific, promoter-driven BVR expression that have resulted in insights on a correlation between root-localized BVR accumulation and photoregulation of root elongation. Plants with BVR accumulation in roots and a PΦB-deficient elongated hypocotyl2 (hy2-1) mutant exhibit roots that are longer than those of wild-type plants under white illumination. Additional analyses of a line with root-specific BVR accumulation generated using a GAL4-dependent bipartite enhancer-trap system confirmed that PΦB or phytochromes localized in roots directly impact light-dependent root elongation under white, blue, and red illumination. Additionally, roots of plants with constitutive plastid-localized or root-specific cytosolic BVR accumulation, as well as phytochrome chromophore-deficient hy1-1 and hy2-1 mutants, exhibit reduced sensitivity to the plant hormone jasmonic acid (JA) in JA-dependent root inhibition assays, similar to the response observed for the JA-insensitive mutants jar1 and myc2. Our analyses of lines with root-localized phytochrome deficiency or root-specific phytochrome depletion have provided novel insights into the roles of root-specific PΦB, or phytochromes themselves, in the photoregulation of root development and root sensitivity to JA.

摘要

植物表现出器官和组织特异性的光反应。为了探索分子基础的空间特异性的光敏色素调控反应,一种调节合成和积累的光敏色素生色团藻红胆素(PΦB)的转基因方法被采用。在先前的实验中,转 BILIVERDIN REDUCTASE(BVR)基因的表达被用来代谢失活胆绿素 IXα,这是 PΦB 生物合成的关键前体,从而使细胞积累 BVR 光敏色素缺陷。在这里,我们报告了对具有不同 BVR 积累模式的转基因拟南芥(Arabidopsis thaliana)系的分析,这些模式依赖于组成型或组织特异性、启动子驱动的 BVR 表达,这为根定位的 BVR 积累与根伸长的光调控之间的相关性提供了一些见解。在白光照射下,根中积累 BVR 且 PΦB 缺陷的伸长下胚轴 2(hy2-1)突变体的根比野生型植物的根长。使用 GAL4 依赖的二分体增强子陷阱系统产生的具有根特异性 BVR 积累的系的进一步分析证实,PΦB 或光敏色素定位于根中,直接影响白光、蓝光和红光下依赖光的根伸长。此外,具有组成型质体定位或根特异性细胞质 BVR 积累的植物的根,以及光敏色素生色团缺陷的 hy1-1 和 hy2-1 突变体,在 JA 依赖性根抑制测定中对植物激素茉莉酸(JA)的敏感性降低,类似于观察到的 JA 不敏感突变体 jar1 和 myc2 的反应。我们对根定位的光敏色素缺陷或根特异性的光敏色素耗竭系的分析为根特异性 PΦB 或光敏色素本身在根发育的光调控和根对 JA 的敏感性中的作用提供了新的见解。

相似文献

4
Detection of spatial-specific phytochrome responses using targeted expression of biliverdin reductase in Arabidopsis.
Plant Physiol. 2009 Jan;149(1):424-33. doi: 10.1104/pp.108.127050. Epub 2008 Oct 29.
5
Spatial-specific regulation of root development by phytochromes in Arabidopsis thaliana.
Plant Signal Behav. 2011 Dec;6(12):2047-50. doi: 10.4161/psb.6.12.18267.
8
Downstream effectors of light- and phytochrome-dependent regulation of hypocotyl elongation in Arabidopsis thaliana.
Plant Mol Biol. 2013 Apr;81(6):627-40. doi: 10.1007/s11103-013-0029-0. Epub 2013 Mar 1.
9
Phototropism and gravitropism in transgenic lines of Arabidopsis altered in the phytochrome pathway.
Physiol Plant. 2012 Jul;145(3):461-73. doi: 10.1111/j.1399-3054.2012.01607.x. Epub 2012 Apr 4.
10
Biliverdin reductase-induced phytochrome chromophore deficiency in transgenic tobacco.
Plant Physiol. 2001 Jan;125(1):266-77. doi: 10.1104/pp.125.1.266.

引用本文的文献

1
Root-specific photoreception directs early root development by HY5-regulated ROS balance.
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2313092121. doi: 10.1073/pnas.2313092121. Epub 2024 Feb 2.
2
Local phytochrome signalling limits root growth in light by repressing auxin biosynthesis.
J Exp Bot. 2023 Aug 17;74(15):4642-4653. doi: 10.1093/jxb/erad163.
4
Phytochrome F mediates red light responsiveness additively with phytochromes B1 and B2 in tomato.
Plant Physiol. 2023 Apr 3;191(4):2353-2366. doi: 10.1093/plphys/kiad028.
6
Guard-cell phytochromes impact seedling photomorphogenesis and rosette leaf morphology.
MicroPubl Biol. 2022 Jan 31;2022. doi: 10.17912/micropub.biology.000521. eCollection 2022.
7
Coordinated Shoot and Root Responses to Light Signaling in .
Plant Commun. 2020 Jan 22;1(2):100026. doi: 10.1016/j.xplc.2020.100026. eCollection 2020 Mar 9.
8
UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development.
EMBO J. 2020 Jan 15;39(2):e101928. doi: 10.15252/embj.2019101928. Epub 2019 Nov 28.
10
Mesophyll-specific phytochromes impact chlorophyll light-harvesting complexes (LHCs) and non-photochemical quenching.
Plant Signal Behav. 2019;14(7):1609857. doi: 10.1080/15592324.2019.1609857. Epub 2019 Apr 30.

本文引用的文献

1
Phytochrome regulation of seed germination.
J Plant Res. 1997 Mar;110(1):151-61. doi: 10.1007/BF02506854.
2
The role of phytochrome in the geotropic behavior of roots of Convolvulus arvensis.
Planta. 1972 Dec;106(4):311-24. doi: 10.1007/BF00384768.
3
Tissue- and isoform-specific phytochrome regulation of light-dependent anthocyanin accumulation in Arabidopsis thaliana.
Plant Signal Behav. 2011 May;6(5):624-31. doi: 10.4161/psb.6.5.15084. Epub 2011 May 1.
4
Functional interconnection of MYC2 and SPA1 in the photomorphogenic seedling development of Arabidopsis.
Plant Physiol. 2010 Nov;154(3):1210-9. doi: 10.1104/pp.110.163717. Epub 2010 Sep 23.
5
A small GTPase activator protein interacts with cytoplasmic phytochromes in regulating root development.
J Biol Chem. 2010 Oct 15;285(42):32151-9. doi: 10.1074/jbc.M110.133710. Epub 2010 Jun 15.
6
Jasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability.
Plant Cell. 2010 Apr;22(4):1143-60. doi: 10.1105/tpc.109.067728. Epub 2010 Apr 30.
7
Jasmonic acid does not mediate root growth responses to wounding in Arabidopsis thaliana.
Plant Cell Environ. 2010 Jan;33(1):104-16. doi: 10.1111/j.1365-3040.2009.02062.x. Epub 2009 Nov 4.
8
Spatial-specific phytochrome responses during de-etiolation in Arabidopsis thaliana.
Plant Signal Behav. 2009 Jan;4(1):47-9. doi: 10.4161/psb.4.1.7271.
9
The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis.
Plant Cell. 2009 Aug;21(8):2237-52. doi: 10.1105/tpc.109.066910. Epub 2009 Aug 11.
10
ROOT UV-B SENSITIVE2 acts with ROOT UV-B SENSITIVE1 in a root ultraviolet B-sensing pathway.
Plant Physiol. 2009 Aug;150(4):1902-15. doi: 10.1104/pp.109.139253. Epub 2009 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验