Volpi Vera, Mackay Daniel, Fanto Manolis
MRC Centre for Developmental Neurobiology, King's College London.
J Vis Exp. 2011 Aug 19(54):2882. doi: 10.3791/2882.
The fruit fly Drosophila melanogaster has made invaluable contributions to neuroscience research and has been used widely as a model for neurodegenerative diseases because of its powerful genetics(1). The fly eye in particular has been the organ of choice for neurodegeneration research, being the most accessible and life-dispensable part of the Drosophila nervous system. However the major caveat of intact eyes is the difficulty, because of the intense autofluorescence of the pigment, in imaging intracellular events, such as autophagy dynamics(2), which are paramount to understanding of neurodegeneration. We have recently used the dissection and culture of single ommatidia(3) that has been essential for our understanding of autophagic dysfunctions in a fly model of Dentatorubro-Pallidoluysian Atrophy (DRPLA)(3, 4). We now report a comprehensive description of this technique (Fig. 1), adapted from electrophysiological studies(5), which is likely to expand dramatically the possibility of fly models for neurodegeneration. This method can be adapted to image live subcellular events and to monitor effective drug administration onto photoreceptor cells (Fig. 2). If used in combination with mosaic techniques(6-8), the responses of genetically different cells can be assayed in parallel (Fig. 2).
果蝇黑腹果蝇对神经科学研究做出了不可估量的贡献,由于其强大的遗传学特性,它被广泛用作神经退行性疾病的模型(1)。果蝇的眼睛尤其成为神经退行性疾病研究的首选器官,因为它是果蝇神经系统中最容易接近且对生命至关重要的部分。然而,完整眼睛的主要问题在于,由于色素的强烈自发荧光,难以对细胞内事件进行成像,例如自噬动力学(2),而自噬动力学对于理解神经退行性变至关重要。我们最近使用了单个小眼的解剖和培养方法(3),这对于我们理解齿状红核苍白球萎缩症(DRPLA)果蝇模型中的自噬功能障碍至关重要(3, 4)。我们现在报告对该技术的全面描述(图1),该技术改编自电生理学研究(5),这可能会极大地扩展果蝇神经退行性疾病模型的可能性。这种方法可用于对活细胞亚细胞事件进行成像,并监测向光感受器细胞有效给药的情况(图2)。如果与镶嵌技术(6 - 8)结合使用,则可以并行检测基因不同细胞的反应(图2)。