Suppr超能文献

DOTA-amide 镧系元素标记用于可靠生成蛋白质 NMR 谱中的赝接触位移。

DOTA-amide lanthanide tag for reliable generation of pseudocontact shifts in protein NMR spectra.

机构信息

Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia.

出版信息

Bioconjug Chem. 2011 Oct 19;22(10):2118-25. doi: 10.1021/bc200353c. Epub 2011 Sep 20.

Abstract

Structural studies of proteins and protein-ligand complexes by nuclear magnetic resonance (NMR) spectroscopy can be greatly enhanced by site-specific attachment of lanthanide ions to create paramagnetic centers. In particular, pseudocontact shifts (PCS) generated by paramagnetic lanthanides contain important and unique long-range structure information. Here, we present a high-affinity lanthanide binding tag that can be attached to single cysteine residues of proteins. The new tag has many advantageous features that are not available in this combination from previously published tags: (i) it binds lanthanide ions very tightly, minimizing the generation of nonspecific effects, (ii) it produces PCSs with high reliability as its bulkiness prevents complete motional averaging of PCSs, (iii) it can be attached to single cysteine residues, alleviating the need of detailed prior knowledge of the 3D structure of the target protein, and (iv) it does not display conformational exchange phenomena that would increase the number of signals in the NMR spectrum. The performance of the tag is demonstrated with the N-terminal domain of the E. coli arginine repressor and the A28C mutant of human ubiquitin.

摘要

通过核磁共振(NMR)光谱学对蛋白质和蛋白质-配体复合物进行结构研究,可以通过将镧系元素离子特异性地附着到产生顺磁中心来大大增强。特别是,由顺磁镧系元素产生的赝接触位移(PCS)包含重要且独特的远程结构信息。在这里,我们提出了一种高亲和力的镧系元素结合标签,可以附着到蛋白质的单个半胱氨酸残基上。与以前发表的标签相比,新标签具有许多以前的标签组合所不具备的有利特征:(i)它与镧系元素结合非常紧密,最大限度地减少了非特异性效应的产生,(ii)它产生的 PCS 非常可靠,因为其体积庞大可防止 PCS 的完全运动平均,(iii)它可以附着到单个半胱氨酸残基上,减轻了对目标蛋白质 3D 结构的详细先验知识的需求,以及(iv)它不显示构象交换现象,这会增加 NMR 光谱中的信号数量。该标签的性能已通过大肠杆菌精氨酸阻遏物的 N 端结构域和人泛素的 A28C 突变体进行了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验