Suppr超能文献

用于准确分子描述多种人类组织正常生理状态的组织特异性基因表达模板,这些组织与发育和癌症研究有关。

Tissue-specific gene expression templates for accurate molecular characterization of the normal physiological states of multiple human tissues with implication in development and cancer studies.

机构信息

Institute of Statistical Science, Academia Sinica, Taipei, Taiwan 115, Republic of China.

出版信息

BMC Genomics. 2011 Sep 1;12:439. doi: 10.1186/1471-2164-12-439.

Abstract

BACKGROUND

To elucidate the molecular complications in many complex diseases, we argue for the priority to construct a model representing the normal physiological state of a cell/tissue.

RESULTS

By analyzing three independent microarray datasets on normal human tissues, we established a quantitative molecular model GET, which consists of 24 tissue-specific Gene Expression Templates constructed from a set of 56 genes, for predicting 24 distinct tissue types under disease-free condition. 99.2% correctness was reached when a large-scale validation was performed on 61 new datasets to test the tissue-prediction power of GET. Network analysis based on molecular interactions suggests a potential role of these 56 genes in tissue differentiation and carcinogenesis.Applying GET to transcriptomic datasets produced from tissue development studies the results correlated well with developmental stages. Cancerous tissues and cell lines yielded significantly lower correlation with GET than the normal tissues. GET distinguished melanoma from normal skin tissue or benign skin tumor with 96% sensitivity and 89% specificity.

CONCLUSIONS

These results strongly suggest that a normal tissue or cell may uphold its normal functioning and morphology by maintaining specific chemical stoichiometry among genes. The state of stoichiometry can be depicted by a compact set of representative genes such as the 56 genes obtained here. A significant deviation from normal stoichiometry may result in malfunction or abnormal growth of the cells.

摘要

背景

为了阐明许多复杂疾病中的分子复杂性,我们认为优先构建代表细胞/组织正常生理状态的模型更为重要。

结果

通过分析三个独立的正常人类组织微阵列数据集,我们建立了一个定量分子模型 GET,它由一组 56 个基因组成的 24 个组织特异性基因表达模板组成,用于预测无疾病状态下 24 种不同的组织类型。在对 61 个新数据集进行大规模验证以测试 GET 的组织预测能力时,达到了 99.2%的正确性。基于分子相互作用的网络分析表明,这些 56 个基因在组织分化和癌变中可能发挥作用。将 GET 应用于组织发育研究产生的转录组数据集,结果与发育阶段密切相关。与正常组织相比,癌细胞和细胞系与 GET 的相关性明显较低。GET 以 96%的灵敏度和 89%的特异性区分黑色素瘤与正常皮肤组织或良性皮肤肿瘤。

结论

这些结果强烈表明,正常组织或细胞可能通过维持基因之间特定的化学计量关系来维持其正常功能和形态。化学计量的状态可以用一组代表基因(如这里获得的 56 个基因)来描述。化学计量的显著偏离可能导致细胞功能障碍或异常生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f1/3178546/e07012545287/1471-2164-12-439-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验