Stem Cell Neurogenesis, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, London W12 0NN, UK.
Development. 2011 Oct;138(20):4363-74. doi: 10.1242/dev.066746. Epub 2011 Aug 31.
Effective induction of midbrain-specific dopamine (mDA) neurons from stem cells is fundamental for realizing their potential in biomedical applications relevant to Parkinson's disease. During early development, the Otx2-positive neural tissues are patterned anterior-posteriorly to form the forebrain and midbrain under the influence of extracellular signaling such as FGF and Wnt. In the mesencephalon, sonic hedgehog (Shh) specifies a ventral progenitor fate in the floor plate region that later gives rise to mDA neurons. In this study, we systematically investigated the temporal actions of FGF signaling in mDA neuron fate specification of mouse and human pluripotent stem cells and mouse induced pluripotent stem cells. We show that a brief blockade of FGF signaling on exit of the lineage-primed epiblast pluripotent state initiates an early induction of Lmx1a and Foxa2 in nascent neural progenitors. In addition to inducing ventral midbrain characteristics, the FGF signaling blockade during neural induction also directs a midbrain fate in the anterior-posterior axis by suppressing caudalization as well as forebrain induction, leading to the maintenance of midbrain Otx2. Following a period of endogenous FGF signaling, subsequent enhancement of FGF signaling by Fgf8, in combination with Shh, promotes mDA neurogenesis and restricts alternative fates. Thus, a stepwise control of FGF signaling during distinct stages of stem cell neural fate conversion is crucial for reliable and highly efficient production of functional, authentic midbrain-specific dopaminergic neurons. Importantly, we provide evidence that this novel, small-molecule-based strategy applies to both mouse and human pluripotent stem cells.
有效诱导源自干细胞的中脑特异性多巴胺(mDA)神经元是实现其在与帕金森病相关的生物医学应用中潜力的基础。在早期发育过程中,Otx2 阳性神经组织在前-后轴上被构象化,形成前脑和中脑,受 FGF 和 Wnt 等细胞外信号的影响。在中脑, sonic hedgehog(Shh)在底板区域指定一个腹侧祖细胞命运,随后产生 mDA 神经元。在这项研究中,我们系统地研究了 FGF 信号在小鼠和人多能干细胞和小鼠诱导多能干细胞中 mDA 神经元命运特化中的时间作用。我们表明,谱系启动的上胚层多能状态退出时短暂阻断 FGF 信号,会在新生神经祖细胞中早期诱导 Lmx1a 和 Foxa2。除了诱导腹侧中脑特征外,神经诱导过程中 FGF 信号阻断还通过抑制尾部化以及前脑诱导来指导中脑前后轴的命运,导致中脑 Otx2 的维持。在经历了一段时间的内源性 FGF 信号后,随后通过 Fgf8 增强 FGF 信号,与 Shh 一起,促进 mDA 神经发生并限制替代命运。因此,在干细胞神经命运转换的不同阶段对 FGF 信号进行逐步控制对于可靠且高效地产生功能、真实的中脑特异性多巴胺能神经元至关重要。重要的是,我们提供的证据表明,这种新的、基于小分子的策略适用于小鼠和人多能干细胞。