Departamento de Mejora Genética Animal, INIA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Ctra. de A Coruña km 7.5, 28040 Madrid, Spain.
Funct Integr Genomics. 2012 Mar;12(1):93-103. doi: 10.1007/s10142-011-0249-9. Epub 2011 Sep 1.
Variations on the transcriptome from one skeletal muscle type to another still remain unknown. The reliable identification of stable gene coexpression networks is essential to unravel gene functions and define biological processes. The differential expression of two distinct muscles, M. flexor digitorum (FD) and M. psoas major (PM), was studied using microarrays in cattle to illustrate muscle-specific transcription patterns and to quantify changes in connectivity regarding the expected gene coexpression pattern. A total of 206 genes were differentially expressed (DE), 94 upregulated in PM and 112 in FD. The distribution of DE genes in pathways and biological functions was explored in the context of system biology. Global interactomes for genes of interest were predicted. Fast/slow twitch genes, genes coding for extracellular matrix, ribosomal and heat shock proteins, and fatty acid uptake centred the specific gene expression patterns per muscle. Genes involved in repairing mechanisms, such as ribosomal and heat shock proteins, suggested a differential ability of muscles to react to similar stressing factors, acting preferentially in slow twitch muscles. Muscle attributes do not seem to be completely explained by the muscle fibre composition. Changes in connectivity accounted for 24% of significant correlations between DE genes. Genes changing their connectivity mostly seem to contribute to the main differential attributes that characterize each specific muscle type. These results underscore the unique flexibility of skeletal muscle where a substantial set of genes are able to change their behavior depending on the circumstances.
不同骨骼肌类型之间的转录组差异仍不清楚。可靠地识别稳定的基因共表达网络对于揭示基因功能和定义生物学过程至关重要。本研究使用微阵列分析牛的两种不同肌肉(M. flexor digitorum [FD]和 M. psoas major [PM]),以说明肌肉特异性转录模式,并量化与预期基因共表达模式相关的连接变化。共有 206 个基因差异表达(DE),94 个在 PM 上调,112 个在 FD 上调。在系统生物学的背景下,探讨了 DE 基因在途径和生物学功能中的分布。预测了感兴趣基因的全局互作网络。快/慢肌肌球蛋白基因、细胞外基质基因、核糖体和热休克蛋白基因以及脂肪酸摄取基因是每种肌肉特有的基因表达模式的核心。参与修复机制的基因,如核糖体和热休克蛋白基因,表明肌肉对相似应激因子的反应能力存在差异,优先作用于慢肌。肌肉特性似乎不能完全用肌肉纤维组成来解释。连接变化解释了差异表达基因之间 24%的显著相关性。改变连接的基因似乎主要有助于每个特定肌肉类型的主要差异特征。这些结果强调了骨骼肌的独特灵活性,其中大量基因能够根据环境改变其行为。