Suppr超能文献

用于追踪“疼痛”通路的转基因小鼠模型

Transgenic Mouse Models for the Tracing of “Pain” Pathways

作者信息

Basbaum Allan I., Bráz João M.

Abstract

The traditional, textbook view of the “pain” pathway illustrates an unmyelinated primary afferent C-fiber, the nociceptor, contacting a second-order dorsal horn neuron at the origin of the spinothalamic and spinoreticular pathways. Although the ultimate cortical target of these different pathways is unclear, there is no question that a better understanding of the mechanisms through which noxious stimuli produce pain requires a better understanding of these circuits. The limitations of our knowledge, of course, go beyond the need to identify cortical targets. We recognize now that there are neurochemically and physiologically distinct populations of afferents, projection neurons, and diverse central nervous system (CNS) targets. In fact, even the classification of nociceptors into and categories is oversimplified (Snider and McMahon 1998). Thus, an array of transient receptor potential (TRP) channels, which respond to different temperatures, natural products, or environmental irritants, establishes subcategories of nociceptors, as do the various Na+ channel subtypes (Caterina and Julius 1999; McCleskey and Gold 1999; Cummins et al. 2007). Even the rather broad categorization of myelinated versus unmyelinated nociceptor is but a first approximation to the diversity of afferent fibers that transmit “pain” messages (Talavera et al. 2008). Furthermore, the spinal cord is also far more complicated and contains various classes of projection neurons (Todd 2002; Morris et al. 2004; Klop et al. 2005), which not only are differentially distributed in the gray matter (e.g., laminae I, V, VII, and X) but also differ in the selectivity of their responses to non-noxious and noxious stimuli, in their receptive field sizes, and in their central targets. What is still not clear, however, is the extent to which there are unique functional correlates of these neurochemically distinct populations of neurons along the pain pathway. For example, it is still not clear to what extent distinct classes of afferents differ in the types of pain provoked by their activation. Of particular interest is the differential contribution of neurons of laminae I and V to nociceptive processing. Some groups argue that only the lamina I neurons are essential for the highly selective discriminative aspect of the pain experience, and that the wide-dynamic-range neurons of lamina V are primarily contributors to sensorimotor integration (Craig 2004). Others argue for an essential contribution of the lamina V neurons (Price et al. 2003; Martin et al. 2004; Mazario and Basbaum 2007). Also unknown is the extent to which subpopulations of dorsal root and trigeminal ganglion (DRG and TG) neurons feed into these sensory-discriminative and limbic/emotional processing regions of the brain, especially in light of the relatively recent discovery of major spinohypothalamic (Burstein et al. 1987; Giesler et al. 1994) and spinoparabrachial-amygdala pathways (Bernard et al. 1989; Bernard and Besson 1990; Jasmin et al. 1997) in addition to the more traditional spinothalamic and spinoreticulothalamic systems. That neurochemically distinct populations of nociceptors indeed access different central circuits is illustrated by the demonstration that the major classes of nociceptors differ in their patterns of axon termination in the spinal cord dorsal horn. The peptide population terminates almost exclusively in the outer laminae of the superficial dorsal horn (laminae I and outer II), targeting projection neurons that transmit nociceptive messages to brainstem and/or thalamus; by contrast, the IB4 population primarily targets interneurons of the inner part of lamina II, a region just dorsal to a distinct subset of interneurons that synthesize the gamma isoform of protein kinase C (PKCγ) (Malmberg et al. 1997). Finally, myelinated neurons project primarily to deeper laminae (III-VII) of the spinal cord (and to a smaller extent to lamina I). These observations support the view that different classes of nociceptors indeed wire to different CNS circuits. Based on the remarkable electrophysiological specificity of afferents and their neurochemical distinctiveness, there is now a general consensus for specificity (i.e., labeled line) features to the afferent, at least with respect to response properties. But whether these afferents converge upon functionally distinct but related populations of projection neuron, resulting in functionally segregated ascending circuits, or whether there is convergence upon populations of projection neurons with common functional properties remains to be determined. Unfortunately, the information about these circuits is extremely limited. Not only is the identity of the neuron immediately postsynaptic to the different nociceptors inadequately specified, but the neurons and circuits that lie downstream of the first synapse in the dorsal horn are also largely uncharacterized. In some cases, the identity of postsynaptic neurons has been determined by electrophysiological analyses, and synapses have been characterized at the electron microscopic level (Westlund et al. 1992; Alvarez et al. 2004; Hwang et al. 2004; Shields et al. 2007; Neumann et al. 2008), but the sample from which the information is derived is extremely small. Studies that monitor Fos expression provide a much more extensive picture of populations of neurons activated by noxious stimuli (Menétrey et al. 1989; Abbadie et al. 1997; Neumann et al. 2008), but there is no information about the circuits that underlie Fos activation. Also unclear are the third-order neurons to which the laminae I and V neurons project. With some exceptions, the map of the intervening circuits is, in fact, largely unknown.

摘要

传统教科书对“疼痛”通路的观点认为,无髓鞘的初级传入C纤维(即伤害感受器)在脊髓丘脑束和脊髓网状束通路的起始处与二级背角神经元相接触。尽管这些不同通路最终的皮质靶点尚不清楚,但毫无疑问,要更好地理解有害刺激产生疼痛的机制,就需要更好地了解这些神经回路。当然,我们知识的局限性不仅在于需要确定皮质靶点。我们现在认识到,传入神经元、投射神经元以及不同的中枢神经系统(CNS)靶点在神经化学和生理上存在不同的群体。事实上,即使将伤害感受器分为Aδ和C类也是过于简化了(斯奈德和麦克马洪,1998年)。因此,一系列对不同温度、天然产物或环境刺激物有反应的瞬时受体电位(TRP)通道,以及各种Na+通道亚型,都确定了伤害感受器的亚类(卡特琳娜和朱利叶斯,1999年;麦克莱斯基和戈尔德,1999年;卡明斯等人,2007年)。即使是将有髓鞘和无髓鞘伤害感受器进行的相当宽泛的分类,也只是对传递“疼痛”信息的传入纤维多样性的初步近似(塔拉韦拉等人,2008年)。此外,脊髓也远比我们想象的复杂,包含各种类型的投射神经元(托德,2002年;莫里斯等人,2004年;克洛普等人,2005年),它们不仅在灰质(如I、V、VII和X层)中分布不同,而且在对无害和有害刺激的反应选择性、感受野大小以及中枢靶点方面也存在差异。然而,目前尚不清楚的是,沿着疼痛通路的这些在神经化学上不同的神经元群体在多大程度上具有独特的功能相关性。例如,不同类别的传入神经元在激活后引发的疼痛类型上的差异程度仍不清楚。特别值得关注的是I层和V层神经元对伤害性处理的不同贡献。一些研究小组认为,只有I层神经元对于疼痛体验中高度选择性的辨别方面至关重要,而V层的广动力范围神经元主要参与感觉运动整合(克雷格,2004年)。另一些人则认为V层神经元也有重要贡献(普赖斯等人,2003年;马丁等人,2004年;马扎里奥和巴斯鲍姆,2007年)。同样未知的是,背根神经节和三叉神经节(DRG和TG)神经元的亚群在多大程度上输入到大脑的这些感觉辨别和边缘/情感处理区域,特别是考虑到除了更传统的脊髓丘脑束和脊髓网状丘脑系统外,最近还发现了主要的脊髓下丘脑束(伯斯坦等人,1987年;吉斯勒等人,1994年)和脊髓臂旁核 - 杏仁核通路(伯纳德等人,1989年;伯纳德和贝松,1990年;贾斯敏等人,1997年)。不同神经化学类别的伤害感受器确实接入不同的中枢神经回路,这一点已通过证明主要类别的伤害感受器在脊髓背角的轴突终末模式不同得到说明。肽能神经元群体几乎完全终止于浅背角的外层(I层和外层II层),靶向将伤害性信息传递到脑干和/或丘脑的投射神经元;相比之下,IB4群体主要靶向II层内部的中间神经元,该区域正好位于合成蛋白激酶C(PKCγ)γ同工型的中间神经元的一个特定子集的背侧(马尔姆贝格等人,1997年)。最后,有髓鞘神经元主要投射到脊髓的更深层(III - VII层)(在较小程度上也投射到I层)。这些观察结果支持了这样一种观点,即不同类别的伤害感受器确实与不同的中枢神经系统回路相连。基于传入神经元显著的电生理特异性及其神经化学独特性,现在人们普遍认为传入神经元至少在反应特性方面具有特异性(即标记线)特征。但是,这些传入神经元是汇聚到功能不同但相关的投射神经元群体上,从而形成功能上分离的上行回路,还是汇聚到具有共同功能特性的投射神经元群体上,仍有待确定。不幸的是,关于这些回路的信息极其有限。不仅与不同伤害感受器直接形成突触的神经元身份尚未明确确定,而且背角中第一个突触下游的神经元和回路在很大程度上也未得到充分描述。在某些情况下,已通过电生理分析确定了突触后神经元的身份,并在电子显微镜水平对突触进行了表征(韦斯特隆德等人,1992年;阿尔瓦雷斯等人,2004年;黄等人,2004年;希尔兹等人,2007年;诺伊曼等人,2008年),但所获取信息的样本非常小。监测Fos表达的研究提供了一幅关于有害刺激激活的神经元群体的更广泛图景(梅内特雷等人,1989年;阿巴迪等人,1997年;诺伊曼等人,2008年),但没有关于Fos激活背后的回路的信息。I层和V层神经元投射到的三级神经元也不清楚。实际上,除了一些例外情况,中间回路的图谱在很大程度上仍然未知。

相似文献

9
Spinal processing: anatomy and physiology of spinal nociceptive mechanisms.脊髓加工:脊髓伤害性感受机制的解剖学与生理学
Philos Trans R Soc Lond B Biol Sci. 1985 Feb 19;308(1136):235-52. doi: 10.1098/rstb.1985.0024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验