Suppr超能文献

富勒烯-金属异质结中的热电现象。

Thermoelectricity in fullerene-metal heterojunctions.

机构信息

Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.

出版信息

Nano Lett. 2011 Oct 12;11(10):4089-94. doi: 10.1021/nl2014839. Epub 2011 Sep 15.

Abstract

Thermoelectricty in heterojunctions, where a single-molecule is trapped between metal electrodes, has been used to understand transport properties at organic-inorganic interfaces. (1) The transport in these systems is highly dependent on the energy level alignment between the molecular orbitals and the Fermi level (or work function) of the metal contacts. To date, the majority of single-molecule measurements have focused on simple small molecules where transport is dominated through the highest occupied molecular orbital. (2, 3) In these systems, energy level alignment is limited by the absence of electrode materials with low Fermi levels (i.e., large work functions). Alternatively, more controllable alignment between molecular orbitals and the Fermi level can be achieved with molecules whose transport is dominated by the lowest unoccupied molecular orbital (LUMO) because of readily available metals with lower work functions. Herein, we report molecular junction thermoelectric measurements of fullerene molecules (i.e., C(60), PCBM, and C(70)) trapped between metallic electrodes (i.e., Pt, Au, Ag). Fullerene junctions demonstrate the first strongly n-type molecular thermopower corresponding to transport through the LUMO, and the highest measured magnitude of molecular thermopower to date. While the electronic conductance of fullerenes is highly variable, due to fullerene's variable bonding geometries with the electrodes, the thermopower shows predictable trends based on the alignment of the LUMO with the work function of the electrodes. Both the magnitude and trend of the thermopower suggest that heterostructuring organic and inorganic materials at the nanoscale can further enhance thermoelectric performance, therein providing a new pathway for designing thermoelectric materials.

摘要

在异质结中,单个分子被夹在金属电极之间,这种结构被用于理解有机-无机界面的输运性质。(1)这些系统中的输运高度依赖于分子轨道和金属接触的费米能级(或功函数)之间的能级对准。迄今为止,大多数单分子测量都集中在简单的小分子上,这些小分子的输运主要通过最高占据分子轨道进行。(2,3)在这些系统中,能级对准受到缺乏低费米能级(即大功函数)的电极材料的限制。或者,可以通过具有较低功函数的金属来实现分子轨道和费米能级之间更可控的对准,从而实现由最低未占据分子轨道(LUMO)主导的输运。在这里,我们报告了富勒烯分子(即 C(60)、PCBM 和 C(70))夹在金属电极(即 Pt、Au、Ag)之间的分子结热电测量。富勒烯结演示了第一个强烈的 n 型分子热电势,对应于通过 LUMO 的输运,这也是迄今为止测量到的最大分子热电势。虽然富勒烯的电子电导由于富勒烯与电极的可变键合几何形状而高度可变,但热电势显示出基于 LUMO 与电极功函数对准的可预测趋势。热电势的大小和趋势都表明,在纳米尺度上异质结构有机和无机材料可以进一步提高热电性能,从而为设计热电材料提供了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验