Han Yingmei, Maglione Maria Serena, Diez Cabanes Valentin, Casado-Montenegro Javier, Yu Xiaojiang, Karuppannan Senthil Kumar, Zhang Ziyu, Crivillers Núria, Mas-Torrent Marta, Rovira Concepció, Cornil Jérôme, Veciana Jaume, Nijhuis Christian A
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra 08193, Spain.
ACS Appl Mater Interfaces. 2020 Dec 9;12(49):55044-55055. doi: 10.1021/acsami.0c15435. Epub 2020 Nov 25.
Control over the energy level alignment in molecular junctions is notoriously difficult, making it challenging to control basic electronic functions such as the direction of rectification. Therefore, alternative approaches to control electronic functions in molecular junctions are needed. This paper describes switching of the direction of rectification by changing the bottom electrode material M = Ag, Au, or Pt in M-S(CH)S-BTTF//EGaIn junctions based on self-assembled monolayers incorporating benzotetrathiafulvalene (BTTF) with EGaIn (eutectic alloy of Ga and In) as the top electrode. The stability of the junctions is determined by the choice of the bottom electrode, which, in turn, determines the maximum applied bias window, and the mechanism of rectification is dominated by the energy levels centered on the BTTF units. The energy level alignments of the three junctions are similar because of Fermi level pinning induced by charge transfer at the metal-thiolate interface and by a varying degree of additional charge transfer between BTTF and the metal. Density functional theory calculations show that the amount of electron transfer from M to the lowest unoccupied molecular orbital (LUMO) of BTTF follows the order Ag > Au > Pt. Junctions with Ag electrodes are the least stable and can only withstand an applied bias of ±1.0 V. As a result, no molecular orbitals can fall in the applied bias window, and the junctions do not rectify. The junction stability increases for M = Au, and the highest occupied molecular orbital (HOMO) dominates charge transport at a positive bias resulting in a positive rectification ratio of 83 at ±1.5 V. The junctions are very stable for M = Pt, but now the LUMO dominates charge transport at a negative bias resulting in a negative rectification ratio of 912 at ±2.5 V. Thus, the limitations of Fermi level pinning can be bypassed by a judicious choice of the bottom electrode material, making it possible to access selectively HOMO- or LUMO-based charge transport and, as shown here, associated reversal of rectification.
众所周知,控制分子结中的能级排列非常困难,这使得控制诸如整流方向等基本电子功能具有挑战性。因此,需要采用其他方法来控制分子结中的电子功能。本文描述了在基于自组装单分子层的M-S(CH)S-BTTF//EGaIn结中,通过改变底部电极材料M(M = Ag、Au或Pt)来实现整流方向的切换,其中自组装单分子层包含苯并四硫富瓦烯(BTTF),顶部电极采用EGaIn(Ga和In的共晶合金)。结的稳定性由底部电极的选择决定,而底部电极的选择又决定了最大施加偏压窗口,并且整流机制由以BTTF单元为中心的能级主导。由于金属硫醇盐界面处的电荷转移以及BTTF与金属之间不同程度的额外电荷转移引起的费米能级钉扎,这三种结的能级排列相似。密度泛函理论计算表明,从M到BTTF的最低未占据分子轨道(LUMO)的电子转移量遵循Ag > Au > Pt的顺序。具有Ag电极的结最不稳定,只能承受±1.0V的施加偏压。因此,没有分子轨道能落在施加偏压窗口内,这些结不发生整流。对于M = Au,结的稳定性增加,并且在正偏压下最高占据分子轨道(HOMO)主导电荷传输,在±1.5V时产生83的正整流比。对于M = Pt,结非常稳定,但现在LUMO在负偏压下主导电荷传输,在±2.5V时产生-912的负整流比。因此,通过明智地选择底部电极材料,可以绕过费米能级钉扎的限制,从而有可能选择性地实现基于HOMO或LUMO的电荷传输,并且如本文所示,实现相关的整流反转。