Suppr超能文献

利用微软Live Labs Pivot自动生成海量图像知识集合,以促进神经影像学和转化研究。

Automated generation of massive image knowledge collections using Microsoft Live Labs Pivot to promote neuroimaging and translational research.

作者信息

Viangteeravat Teeradache, Anyanwu Matthew N, Ra Nagisetty Venkateswara, Kuscu Emin

机构信息

Clinical and Translational Science Institute University of Tennessee Health Science Center, Memphis, TN 38163, USA.

出版信息

J Clin Bioinforma. 2011 Jul 15;1(1):18. doi: 10.1186/2043-9113-1-18.

Abstract

BACKGROUND

Massive datasets comprising high-resolution images, generated in neuro-imaging studies and in clinical imaging research, are increasingly challenging our ability to analyze, share, and filter such images in clinical and basic translational research. Pivot collection exploratory analysis provides each user the ability to fully interact with the massive amounts of visual data to fully facilitate sufficient sorting, flexibility and speed to fluidly access, explore or analyze the massive image data sets of high-resolution images and their associated meta information, such as neuro-imaging databases from the Allen Brain Atlas. It is used in clustering, filtering, data sharing and classifying of the visual data into various deep zoom levels and meta information categories to detect the underlying hidden pattern within the data set that has been used.

METHOD

We deployed prototype Pivot collections using the Linux CentOS running on the Apache web server. We also tested the prototype Pivot collections on other operating systems like Windows (the most common variants) and UNIX, etc. It is demonstrated that the approach yields very good results when compared with other approaches used by some researchers for generation, creation, and clustering of massive image collections such as the coronal and horizontal sections of the mouse brain from the Allen Brain Atlas.

RESULTS

Pivot visual analytics was used to analyze a prototype of dataset Dab2 co-expressed genes from the Allen Brain Atlas. The metadata along with high-resolution images were automatically extracted using the Allen Brain Atlas API. It is then used to identify the hidden information based on the various categories and conditions applied by using options generated from automated collection. A metadata category like chromosome, as well as data for individual cases like sex, age, and plan attributes of a particular gene, is used to filter, sort and to determine if there exist other genes with a similar characteristics to Dab2. And online access to the mouse brain pivot collection can be viewed using the link http://edtech-dev.uthsc.edu/CTSI/teeDev1/unittest/PaPa/collection.html (user name: tviangte and password: demome)

CONCLUSIONS

Our proposed algorithm has automated the creation of large image Pivot collections; this will enable investigators of clinical research projects to easily and quickly analyse the image collections through a perspective that is useful for making critical decisions about the image patterns discovered.

摘要

背景

神经影像学研究和临床影像研究中生成的包含高分辨率图像的海量数据集,对我们在临床和基础转化研究中分析、共享和筛选此类图像的能力提出了越来越大的挑战。枢轴集合探索性分析使每个用户能够与大量视觉数据充分交互,以充分促进足够的分类、灵活性和速度,从而流畅地访问、探索或分析高分辨率图像的海量图像数据集及其相关元信息,例如来自艾伦脑图谱的神经影像数据库。它用于对视觉数据进行聚类、筛选、数据共享,并将其分类到各种深度缩放级别和元信息类别中,以检测已使用的数据集中潜在的隐藏模式。

方法

我们使用运行在Apache Web服务器上的Linux CentOS部署了枢轴集合原型。我们还在其他操作系统(如Windows(最常见的变体)和UNIX等)上测试了枢轴集合原型。结果表明,与一些研究人员用于生成、创建和聚类海量图像集合(如来自艾伦脑图谱的小鼠脑冠状和水平切片)的其他方法相比,该方法产生了非常好的结果。

结果

使用枢轴视觉分析来分析来自艾伦脑图谱的数据集Dab2共表达基因的原型。使用艾伦脑图谱应用程序编程接口自动提取元数据以及高分辨率图像。然后,它用于根据通过自动收集生成的选项所应用的各种类别和条件来识别隐藏信息。诸如染色体之类的元数据类别,以及诸如性别、年龄和特定基因的计划属性等个别病例的数据,用于筛选、排序并确定是否存在与Dab2具有相似特征的其他基因。可以使用链接http://edtech-dev.uthsc.edu/CTSI/teeDev1/unittest/PaPa/collection.html(用户名:tviangte,密码:demome)在线查看小鼠脑枢轴集合。

结论

我们提出的算法实现了大型图像枢轴集合创建的自动化;这将使临床研究项目的研究人员能够通过一个有助于对发现的图像模式做出关键决策的视角,轻松快速地分析图像集合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74f1/3164611/664e3f480350/2043-9113-1-18-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验