School of Electronics and Information Engineering, Dalian University of Technology, Dalian, Liaoning, China.
J Biomed Inform. 2011 Dec;44(6):1086-92. doi: 10.1016/j.jbi.2011.08.011. Epub 2011 Aug 23.
Automated extraction of protein-protein interactions (PPIs) from biomedical literatures is an important topic of biomedical text mining. In this paper, we propose an approach based on neighborhood hash graph kernel for this task. In contrast to the existing graph kernel-based approaches for PPI extraction, the proposed approach not only has the capability to make use of full dependency graphs to represent the sentence structure but also effectively control the computational complexity. We evaluate the proposed approach on five publicly available PPI corpora and perform detailed comparisons with other approaches. The experimental result shows that our approach is comparable to the state-of-the-art PPI extraction system and much faster than all-path graph kernel approach on all five PPI corpora.
从生物医学文献中自动提取蛋白质-蛋白质相互作用(PPIs)是生物医学文本挖掘的一个重要课题。在本文中,我们提出了一种基于邻域哈希图核的方法来解决这个问题。与现有的基于图核的 PPI 提取方法相比,所提出的方法不仅具有利用完整的依存关系图来表示句子结构的能力,而且还能有效地控制计算复杂度。我们在五个公开的 PPI 语料库上评估了所提出的方法,并与其他方法进行了详细比较。实验结果表明,我们的方法与最先进的 PPI 提取系统相当,并且在所有五个 PPI 语料库上都比全路径图核方法快得多。