Suppr超能文献

通过对经支气管超声探头图像的灰阶纹理分析进行良恶性淋巴结病变的光学区分。

Optical differentiation between malignant and benign lymphadenopathy by grey scale texture analysis of endobronchial ultrasound convex probe images.

机构信息

Department of Thoracic Medicine, The Royal Brisbane and Women's Hospital, Herston, Australia; The University of Queensland, UQ Centre for Clinical Research, CSIRO Information and Communication Technologies Centre, The Royal Children's Hospital, Herston, Australia; School of Medicine, Faculty of Health Sciences, University of Queensland, St. Lucia, QLD, Australia.

Department of Thoracic Medicine, The Royal Brisbane and Women's Hospital, Herston, Australia; School of Medicine, Faculty of Health Sciences, University of Queensland, St. Lucia, QLD, Australia.

出版信息

Chest. 2012 Mar;141(3):709-715. doi: 10.1378/chest.11-1016. Epub 2011 Sep 1.

Abstract

BACKGROUND

Morphologic and sonographic features of endobronchial ultrasound (EBUS) convex probe images are helpful in predicting metastatic lymph nodes. Grey scale texture analysis is a well-established methodology that has been applied to ultrasound images in other fields of medicine. The aim of this study was to determine if this methodology could differentiate between benign and malignant lymphadenopathy of EBUS images.

METHODS

Lymph nodes from digital images of EBUS procedures were manually mapped to obtain a region of interest and were analyzed in a prediction set. The regions of interest were analyzed for the following grey scale texture features in MATLAB (version 7.8.0.347 [R2009a]): mean pixel value, difference between maximal and minimal pixel value, SEM pixel value, entropy, correlation, energy, and homogeneity. Significant grey scale texture features were used to assess a validation set compared with fluoro-D-glucose (FDG)-PET-CT scan findings where available.

RESULTS

Fifty-two malignant nodes and 48 benign nodes were in the prediction set. Malignant nodes had a greater difference in the maximal and minimal pixel values, SEM pixel value, entropy, and correlation, and a lower energy (P < .0001 for all values). Fifty-one lymph nodes were in the validation set; 44 of 51 (86.3%) were classified correctly. Eighteen of these lymph nodes also had FDG-PET-CT scan assessment, which correctly classified 14 of 18 nodes (77.8%), compared with grey scale texture analysis, which correctly classified 16 of 18 nodes (88.9%).

CONCLUSIONS

Grey scale texture analysis of EBUS convex probe images can be used to differentiate malignant and benign lymphadenopathy. Preliminary results are comparable to FDG-PET-CT scan.

摘要

背景

经支气管超声(EBUS)凸面探头图像的形态学和超声特征有助于预测转移性淋巴结。灰度纹理分析是一种成熟的方法,已应用于医学其他领域的超声图像。本研究旨在确定该方法是否可以区分 EBUS 图像的良性和恶性淋巴结病。

方法

从 EBUS 程序的数字图像手动映射淋巴结以获得感兴趣区域,并在预测集中进行分析。在 MATLAB(版本 7.8.0.347 [R2009a])中对感兴趣区域进行以下灰度纹理特征分析:平均像素值、最大和最小像素值之间的差异、SEM 像素值、熵、相关性、能量和同质性。使用有意义的灰度纹理特征来评估与氟代-D-葡萄糖(FDG)-PET-CT 扫描结果的验证集,如有。

结果

预测集中有 52 个恶性淋巴结和 48 个良性淋巴结。恶性淋巴结的最大和最小像素值、SEM 像素值、熵和相关性差异更大,能量更低(所有值的 P <.0001)。验证集中有 51 个淋巴结;51 个中的 44 个(86.3%)被正确分类。其中 18 个淋巴结也进行了 FDG-PET-CT 扫描评估,正确分类了 18 个淋巴结中的 14 个(77.8%),而灰度纹理分析正确分类了 18 个淋巴结中的 16 个(88.9%)。

结论

EBUS 凸面探头图像的灰度纹理分析可用于区分恶性和良性淋巴结病。初步结果与 FDG-PET-CT 扫描相当。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验